OEAWM '\g&&q

UNIVERSITY CF CALIFORNIA

Los Angeles

Theory and Simulations on Beat Wave Excitation

of Relativistic Plasma Waves

A dissertation submitted in partial satisfaction of the
requirements for the degree of Doctor of Philosophy

in Electrical Engineering

by

Warren Bicknell Mori

1987



To my family

Hideo, Ann, Susanne, Bruce, and Quincy




W

My

LIST OF SYMBOLS

frequency difference of lasers
pump frequency

laser frequencies

plasma frequency

average plasma frequency

ion plasma frequency

Bohm Gross frequency

ion acoustic frequency

stokes freguency

anti-stokes frequency

frequency difference

wave number difference of lasers

laser wave numbers

density ripple wave number
Boltzmans constant

wave number difference
idler wave number

pump wave number

stokes wave number

anti—-stokes wave number




er
e

Yo

-

electron charge

peak normalized (mcmp/e) amplitude of first harmonic
nermalized (mcmp/e) elecktric field amplitude of
{j-1) harmonic

value of e, at the fixed point

€n T Cf

normalized (c) fluid wvelocity of (j—1) harmonic
wave phase velocity

light wave group velocity

normalized (n,) density of (j-1) harmonic
total electron density

ion density

relativistic Lorentz factor
phenomological damping coefficient
relativistic Lorentz factor for V=V

normalized (27F2C/4)1/2 damping

Lagrangian fluid displacement

Lagrangian position coordinate
normalized (mcwq g/e) electric field of lasers

electron mass

ion mass



Lg lagser beam cross section

Vth electron thermal velocity (kTe/m)1/2

aa modified electron thermal velocity (ZKTe/m>1/2
Ta electron temperature

Ty ion temperature

£ perturbation expansion parameter

€ dielectric function

£ ampiitude of ion density

€5 coupling constant in nonlinear wave equation
€j velocity in wave equation

C speed of light

C (3/16)(@6[@3)(v§/c2)w0

F amplitude of beat wave driving force Gqapu,/4
F, 2F

Fo peak value of F in rise time

8 wp < Wy

A wg - w3

A fy + F

Ay mismatch (wg - m%)/Zwo

Be ~(27F2C/2)1/3

iy AC2TF2C/4) ™1/ 3

T lager rise time




Yo
¥o
¥

bf

Yf

sy

beat wave growth time

normalized pump amplitude
normalized stokes amplitude

normalized anti-stokes amplitude

nth order ordinary Beggel function of the first kind

phase difference of lasers (Kgx — wgt)
(Kgx + wot)
phase that maximizes Ey

phase of plasma wave {(Kgx = wat + ¢}

value of ¢ at the fixed point
sine ¢
sine ¢

Yy ©YFf




ACKNOWLEDGEMENTS

In the course of this research I have been blessed with Ethe
support of many people.

I am grateful for the advice, patience, and computer time from
the X-1 group at Los Alamos during my three summers as a GRA.
Special thanks go to my advisers away from UCLA, Dave Forslund and
Joe Kindel, for their selfless support and guidance. Working with
Dave was a special treat.

Every graduate student needs and values the friendship and
camaraderie of their office mates, My office mates were Tom
Katsouleas, Jose Milovich, Chris Darrow, and Inge .Jechart. For
the endless hours of useful and useless discussions, I thank you.

1 benefited from many conversationg with Bob Bingham and Colin
McKinstrie at various conferences and workshops.

I have been fortunate to have had a triumvirate of advisers at
UCLA. I thank Pref. Chen fof his insigtence on clarity and his
probing questions during our weekly group meetings and his office
hours. For his enthusiasm, insight, and ideas during our discus-
gionsg, 1 thank Prof. Dawson. Whatever I have Dbecome as. a
researcher I owe mogtly to Chan Joshi for his patience and guid-
ance over the vears.

Last, I thank my mother for her time and effort in typing this

dissertation.




VITA

August 8, 1959--Born, Weymouth, Massachusetts

1981--B.S., University of California, Berkeley

1982-1987-—Research Asgistant, Department of Electrical
Engineering and Department of Physics,
University of California at Los Angeles

1983-1985--Summer Graduate Research Assistant, Les Alamos National
Laboratory

1984~--M.S., University of California at Los Angeles

PUBLICATIONS

W. B. Mori, C. Joshi, and J. M. Dawson, "A Plasma Wave
Accelerator — Surfatron 1I," IEEE Trans. on Nucl. Sci. NS-30,
3244 (1983).

T. Katsouleas, C. Joshi, W. B. Mori, J. M. Dauson, and F. F. Chen,
"Prospects of the Surfatron Laser Plasma Accelerator," Proc.

12th Intl. Conf. on High Energy Accelerators, Fermilab (19B83).

C. Joshi, W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel,
and D. W. Forslund, "Ultra-High Gradient Particle Acceleration
by Intense Laser-Driven Plasma Density Waves,” Nature 311, 525
(1984),

J. M. Kindel, D. W. Forslund, W. B. Mori, C. Joshi, and J. M.

Dawson, "Plasma Simulation Studies of Electron Acceleration




for Beat Wave and Single Frequency Laser Heating Schemes,”

Proc. of the 1984 Int. Conf. on Plasma Phvsics, Lausanne,

Switzerland; June-July 1984, 1, 187.
D. W. Forslund, J. M. Kindel, W. B. Mori, C. Joshi, and J. M.
Dawson, "Two-Dimensional Studies of Single Freguency and Beat
Wave Laser-Plasma Heating," Phys. Rev. Letters 54, 558 (1985},
R. Bingham, W. B. Mori, and J. M. Dawson, "Some Nonlinear
Processes Relevant to the Beat Wave Accelerator,” in Laser

Acceleration of Particles, ed. by C. Joshi and T. Katsouleas

(Am. Inst. of Physics, NY, 1985) pp. 138-145.
T. Katsouleas, C. Joshi, J. M. Dawson, F. F. Chen, C. E. Clayton,
W. B. Mori, C. Darrow, and D. Umstadter, "Plasma

Accelerators,”™ in Laser Accelersation of Particles, ed. by C.

Joghi and T. Katsouleas (Am. Inst. of Physics, NY, 1985
pp. 63-98.
J. M. Kindel, D. ¥W. Forslund, W. B. Mori, C. Joshi, and J. M.

Dawson, "Two Dimensional Beat Wave Acceleration Simulations,'

Proc. of the Int, Conf. on Lasers '84, ed. by K. M. Corcoran,

D. M. Sullivan, and W. C. Stwalley, pp. 462-465 (1985).
W. B. Mori, C. Joshi, J. M. Dawson, K. Lee, D. W, Forslund, and
J. M. Kindel, "Studies of the Plasma Droplet Accelerator
Scheme," IEEE Trans. on Nucl. Sci., N5-32, 3555 (1985),
W. B. Mori, "On Nonlinear Frequency Shifts in Beat Wave Excita-

tion,” Proc. of the CECAM Workshop on Interaction and Trans-

port in Laser—Plasmas, Orsay, France (1985).

€. Darrow, D. Umstadter, T. Katsouleas, W. B. Mori, C. E. Clayton,




and C. Joghi, "Quasi-Resonant Mode Coupling in a Beat Excited
Plagma," Phys. Rev. Lett 56, 2629 (1386).

C. Joghi, T. Katsouleas, C. E. Clayton, W. B. Mori, J. M. Kindel,
and D. W. Forslund, "Experimental, Theoretical, and Computa-—
tional Studies of the Plasma Beat Wave Accelerator at UCLA,"

Proc., of the Sympogium on Adv. Accelerator Concepts, Madison,

Wisconsin, August 21-27, 1986. To be published in the Am.
Inst. of Physics Conference Proceedings Series.

T. Katsouleas, C. Joshi, and W. B. Mori, "Comment on 'Free-
Electron Laser and Laser Electron Acceleration Based on the
Megagauss Magnetic Fields in Laser-Produced Plasmas," Phys.
Rev. Lett. 87. 1960 (1986).

W. B. Mori, "On Beat Wave Excitation of Relativistic Plasna

Waves,” IEEE Trans. on Plasma Science, special issue on Plasma-

Based High-Energy Accelerators, ed. by T. Katsouleas (April
- 1987T1).
C. Darrow, W. B. Mori, T. Katsouleas, C. Joshi, D. Umstadter, and
C. E. Clayton, "Electrostatic Mode Coupling of Beat Excited

Electron Plasma Waves,"™ IEEE Trans. on Plasma Science, special

issue on Plasma-Based High-Energy Accelerators, ed. by T.
Katsouleas (April 1987,

W. B. Mori, C. Joshi, J. M. Dawson, D. W. Forslund, and J. M.
Kindel, "Two-Dimensional Simulations of Intense Laser Irradia-

tion of Underdense Plasmas,"” Laser Interaction and Related

Plasma Phenomena, Vol. 7, ed. by H. Hora and G. Miley (Flenum,

New York, 1987).




W. B. Mori, C. Joshi, J. M. Dawson, D. W. Forslund, and J. M.
Kindel, "Laser Beam Self-Focusing and Filamentation in a
Plasma,™ Phys. Rev. Lett, in preparation.

W. B. Mori, C. Joshi, J. M. Dawson, T. Katsouleas, D. W. Forslund,
and J. M. Kindel, "Computer Simulations of Beat Wave

Excitation," Phys. Fluids, in preparation.




TABLE OF CONTENTS

Page
List of Symbols ... .. i i ittt e iv
CACKnoWledgement s L.t e e i viii
Vita and Publicabions . ...... ...t iinrinnrnnerns ix
ADEtract . i i i e it it i e e xvi
Chapter I. INTRODUCTION . ...t iniiiiinirinnnnenennnns 1
PART A — BEAT WAVE EXCITATION
Chapter II. THEORY ... ... iiiniinninnanennnns &
A. Introduction ... ...l 6
B. Beat Wave Excitation ............ . i, 7
1. Model Equations .........iiiiiiiiinriiiinnennn T
2. Growth and Saturation ........... ... aiiinnnn 12
a. Early Time Behavior ........c.....iiivainn 13
b. Late Time (Asymptotic) Behavior .......... 14
3. RiSe Time EFfectS .....vueevnerocenrenneennn. 26
4. Phase Velocity Shift ....... ... ... i ot 34
S. Harmonics ...t iiinreneetms st oannasan 37
6. Pump Depletion ......ciiiiin e nnreinns 41
T. Inhomogeneities ... ...t iiniinnnnnn 44
8. 2-D Effects ... i i 53
C. BUMMAYY & ir et s it tmmccrssaesnssassnassassacacnsas 56
Chapter III. SIMULATIONS ......... i, 59

A, Introduchion . it ittt ittt i sttt e e et e e e e 59




Chapter
A.

B.

CHAPTER
A.

B.

Results ... i e s e
1. Short Rise Time v < tg ..., i,
2. Long Rise Time T 2 tg .......... . ...uvienn.
B 4 T
4, Density CGradient ...........iiiiiiiiiirianven,
5. Density Ripple .. .ottt et
6. Discrete ICNS ... .iiiiiiiiiinaiir e aannas
7. Two Dimensions ......cvviivrrnmersnvrnnnnnann
S B 111
PART B - COMPETING INSTABILITIES

IV. DESCRIPTIONS OF COMPETING INSTABILITIES
Introduction ...t ittt annna
Growth Rates ... it iiii i,
1. Relativistic Instabilities ............... ...

Z. Ponderomotive Force Driven Instabilities
of Electromagnetic Waves ........cvvuvnvinnnn
B, OBS L e e e
o T )
c. Self-Focusing and Filamentation .........

3. Ponderomotive Force Driven Instabilities
of Electrostatic Waves ............ ... .. .00

a. Parametric Decay and Self-Modulation
Simulations . ... i et
V. SIMULATIONS OF COUPLING INSTABILITIES .......
Introduction ...... ... ittt e

Electromagnetic Self-Focusing and Filamentation ..

b1

61

T3

76

81

85

88

89

114

118

118

120

121

131

131

135

138

140

141

144

144

145



1. Plane Waves ...t iiiirtiernersaaanens 146

2. Finite Wave Fronts ........ . ciieu.n. P 152

3. Long Time Behavior ... .., 171

C. 1Ion Driven Instabilities .............. ... ... ... 174

1. SBS i e e e i 175

2. Parametric Decay . ... .. ittt 183

D. Summary and Conclusions ............. : ........... 150
CHAPTER VI. SOME FINAL THOUGHTS ............ciiiiiiin, 195
REFERENCES .. vovvrrnnnneenannnns. BRI 198

APPENDIX A - ON NONLINEAR PLASMA FREQUENCY SHIFTS
IN BEAT WAVE EXCITATION ................... 202

APPENDIX B ~ EXCITATION OF PLASMA WAVES WITH Aw = 2w 214




ABSTRACT QF THE DISSERTATION

Theory and Simulations of Beat Wave Excitation

of Relativistic Plasma Waves

by

Warren Bicknell Mori
Doctor of Philosophy in Electrical Engineering
Professor Francis F. Chen, Co~Chair
Professor John M. Dawson, Co—Chair

Professor Chandrashekhar Joshi, Co-Chair

The generation of excitation of large amplitude plasma waves by
the beating of two collinear laser beams is studied apalytically
and via computer experiments. When the difference (beat) frequency
of the two lasers is near the natural frequency of the plasma, a
large amplitude wave appropriate for accelerating particles to
ultrahigh energies can be excited. The subject is divided into two
parts. The first is the analysis of beat wave excitation (BWE} in
the absence of competing processes. The second is the identifica~-
tion and the determination of the relative importance of the com-
peting processes.

Beat wave excitation is studied analytically in the Eulerian
fluid description for prescribed forms of the input light waves.

The full set of the Maxwell and plasma fluid equations is reduced




perturbatively to a single cubic nonlinear equation. In the pro-
cess, & controversy existing over the sign and magnitude of the
nonlinear term is resolved. The consistency between the Eulerian
and Lagrangian description is explicitly verified.

The implications of the reduced equation are studied. The
subjects of saturation, phenomonological damping, phase velocity,
pump rise time, harmonics, cascading, density inhomogeneities, and
two-dimensional effects are briefly discussed analytically. The
analytical results, whenever possible, are tested in computer
experiments—both in one and two dimensions. It is found that for
early enough times the simulations agree with the reduced cubic .
nonlinear equation rather accurately. The simulations illustrate
the limitations of the theory.

The possible competing instabilities are investigated. Rela-
tivistic self-modulation and self-focusing of both plasma waves and
light waves are discussed in more detail since they are less common
in the literature. The other instabilities examined are Stimulated
Brillowin Scatter, Stimulated Ramsn Scatter, and ponderomotive
filamentation of the light waves; while pondercomotive self-modula-
tion and parametric decay of the plasma wave are discussed. These
competing processes and their importance to BWE are examined
through computer experiments. It is found that strongly coupled
parametric decay presents the most serious problem for BUWE. The
other instabilities occur, but their relative importance can be
decreased when parameters relevant to particlé accelerators are

considered.




CHAPTER I -~ INTRODUCTION

Theoretical particle physicists continue to put forth new
theories on the nature of and interaction bhetween the smallest
particles that conpose our universe. These theories are based
partly on existing experimental results and on conjecture. In
order to test these conjectures, experimental high-energy physi-
cists have had to collide varicus subatomic particles at increas-
ingly higher energies. For now, accelerator technology has kept
pace with this demand with remarkable success. Since the first
cyclotrons of the 1930s, the maximum energy provided by accelera-
tors hag increased by nearly an order of magnitude per decade.
This is displayed in what is referred to as the Livingston chart,
and it is presented in Fig. 1.

The maximum accelerating gradient provided by present-day
accelerators is 20 H%E.i Using this gradient, the largest acceler-
ators provide 1 TeV protons and 50 GeV electrons. To do so, these
machines have become extremeiy large and expensive. If the
present—day technology is continued to be used. then future accel-
erators will have to be even larger and more expensive, For exam-
ple, the proposed S§8C (super conducting super collider) will be 90
km in circumference and cost an estimated $4.4 billion.2 Eventu-
ally, either new technolegies that provide larger gradients or
cheaper real estate need to be found.

One of the limitations of conventional technology is that the
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Figure 1. The Livingston chart: progress in high energy
accelerators.




walls of the accelerator break down for large fields. A plasma
cannot break down as it ig already ionized and, thus, can support
much larger fields. If these fields can be formed into a coherent
longitudinal wave, then they can accelerate particles. When the
phase velocity of the wave is close to the speed of light, then the
final energy of the accelerated particles can be quite high.

With the advent of high-power lasers, researchers have
attempted to find ways of utilizing large electric fields of the
lasers directly to accelerate particles. In vacuum, this has to
date been fruitless. On the other hand, 1laser acceleration in
magnetic fields3 or in gases with indexes of refraction greater
than unitvy4 have already been shown to hold promise.

It was recently suggested that high-intensity lasers could be
used to excite a plasma wave. The idea was to use two collinear
lasers with a frequency separation equal to the background plasma
frequency. The beating pattern of the two laser beams through
nonlinear interactions with the plasma provides a force called the
ponderomotive force. This force bunches the electrons at the
spacing of the beating pattern and they oscillate at the beat fre-
quency. If the beat frequency matches the resonant plasma fre-
quency, the plasma wave is resonantly excited. This schemeS:6:7
has been labeled the Plasma Beat Wave Accelerator (PBWA). It is
commonn to both the subjects of laser accelerators and plasma
accelerators.

It is straightforwardly shown® that the energy obtained from

an electrostatic wave with a scalar potential of the form




ed

mez - o sin wp(t - 3‘,—4—’)

is Qeoyg mc2 and it 1s acquired in a distance ZﬂYg,%!; if vy >> 1.
2

Vi - ame?n, |\
We define vy = (1 - E%] 1/Zamd wp = M )where N is the plasma

density. Therefore, the values of e, and Yo are the parameters
that determine the promise of an accelerator based on a plasma
vave. Note that the wvalue of the electric field corresponding to
such a scalar potential is ~e0Jn_0(g_,ﬁ] where n, is in units of cm™3.
For a plasma density of 1018, this gives an accelerating gradient
of eolo‘i(gﬁ!], which is 500 times larger than current accelerators
provide (e, is generally smaller than unity).

In order to determine the promise of the PBWA, it is necessary
to characterize the properties of a plasma wave excited from beat
wave excitation (BWE). Previous work has shown that e, is =&
function of laser intensity,8:% while Yy is equal to the ratio of
the laser frequency to the plasma frequency.? In this disserta-
tion the properties of e; and Yy are investigated further. In Part
A, BWE is addressed in the absence of competing instabilities but
including such effects as damping, laser rise time, and inhomogene-—
ities. In Chapter II, the properties of e, and Yo are studied ana-
lvtically. The limitations of the analytic work are examined via
computer simulations in Chapter III. In Part B, the role of com
peting instabilitiegs is discussed. Chapter IV is devoted to iden-

tifying which ingtabllities are believed to be important. In

Chapter V, the relevance of the competing instabilities is deter~




mined from computer simulations, The implications of the simula-
tions to an eventual accelerator are summarized in Chapter VI.

We mention that although this work has been motivated by the
interest in PBWA, it is also intended to illustrate the multitude
of basic plasma physics phenomena that arise in intense irradiation
of underdense plasmas. In this spirit, some phenomena that occur

well after any plasma wave 1g discernible are mentioned.




PART A. ON BEAT EXCITATION OF RELATIVISTIC PLASMA WAVES

CHAPTER II. THEORY

TIA. Introduction

The subject of charged particle acceleration by longitudinal
waves in plasmas has received considerable attention during the
previous 10 vyears. This has been particularly true in the fields
of laser fusion coronal physicsi0,11,12,13 and beat wave accelera-
tion.3:6.:7,14,15,16 With few exceptions, the early work was con-
cerned with plasma waves whose phase velocities (vy) were small
enough when compared to the speed of light (c) so that the
relativistic factor associated with the phase velocity Yo [1 -
<v¢2/c2)]'1/2 was close to unity.190,14,12,13 Recently interest has
shifted to the opposite situation where vy >> 1.3,6:7:8,14
Electrong trapped in plasma waves with this property can acquire
enormous amounts of energy; and if the electric field of the plasma
wave is large then these enormous energies can bhe acquired in
remarkably short distances——distances so short, in fact, that such
plasma waves have been suggested as the basis for future high
energy accelerators. In this dissertation we concern ourselves
primarily with the high Y limit with the accelerator application
in mind.

There are two mechanisms presently being seriously considered

to excite the plasma wave. In one, a relativigtic bunch of elec-




trons 1is injected into the plasma, resulting in a "wake field"
behind the bunch with a vy equal to the velocity of the bunch, 17
This scheme will not be discussed in this dissertation, although
the issues concerning the stability of large amplitude plasma waves
are identical fto those in the second scheme. In the gecond, two
collinear laser beams whose frequency difference equals the plasma
frequency, resonantly drive up a plasma wave with a phase velocity
approximately equal to the group velocity of light in a plasma.5:6,7
When this mechanism is used as the driver, the acceleration scheme
called, for obvious reasons, the plasma bealt wave accelereator
{PBWA) .

In Sec. IIB we start from Maxwells equations and the Eulerian
equation of motion, assuming two input light waves. The resulting
envelope equations are reviewed and the magnitude and sign of the
nonlinear freguency shift 1is examined in Appendix A. We then
focus on issues concerning the PBWA. In Sec. IIC the results of

Chapter Il are summarized.

ITB. Beat Wave Excitation

II1B1., Hodel Eguations

During the past 20 yeaﬁs the process of resonantly exciting
plasma waves from twe electromagnetic waves whose frequency dif-
ference matches the plasma frequency has been proposed as a means
to (1) diagnhose the plasma density,'8® (2) heat a plasma,8:19 (3)
generate current in a "Tokamak,"2¢ (4) study the ionosphere,21 and

(5) accelerate electrons to ultra high energies.3:6:7:/14 In this




dissertation we present theory emphasizing the last application.
The Eulerian fluid equations are used as the starting point to
study the problem analytically. The early work on beat excitation
used the Lagrangian fluid equations.8:9 Recent work, however, has
used the Eulerian fluid equations and this has led to a discrepancy
in the literature.22,23,24 This is resolved in Appendix A,6%5:26
Furthermore, the wuse of Eulerian coordinates permits straight-~
forward transitions to the study of the stability of transverse
waves.

In the cold plasma limit the étarting equations are the rela-
tivistic equations of motion for electrons without the presgsure

term, the continuity equation, and Maxwells equations:

d = . ] > > > 3’:3 (1)
G B =[oe r VB = efE

8N YN =0 (N =1 + ) (2)
at

vxﬁzfl—ﬂ3’+1@ (3)

c < at
1 o8
Wk = o (4)
V-g = 4np = —47en. (5)
Combining Egs. (3) and (4) in the usuval way gives
1 323 2 _4no 2 _4nd
[ V= V= o2 Btz]ﬁ =2 ar J T 22 3t {(—eNv). (6)




We define N = n, + n where n,, the background density, is not a

function of time.

It follows then that Eq. (6) becomes

122 2 4ref.. d_> . B 2
2 - 2. 22 _ yy.|E = -0 WO
[v c2 3tz ]E c2 ["0 ot V7 at“VJ «n
a—)
An equation for 5% can be obtained from Eq. (1) by noting that

3y > > 2 >

d »_d _-» v2Y®  yv T dv _ ef?  wxB} .o

R AR | e L D e I

©
wvhere I is the unit dyadic. Inverting the dyadic leads to

L. [? - 33]'{§ + gﬁg}“ 9% 2 (9)
dt Ym c? ¢
Consequeﬁtly,
g% = -v.w - & [? - g%].[ﬁ + 323 }“m w»ér?;i o)
Substituting Eq. (10) into Eq. (7) gives
(72 - 45 22, - w2 - Az {gg 3 - B
géf (? - gg].(ﬁ + 3;%)} ) (11)

2
We expand v to lowest order vy = [1 + = gg] and collect the linear




terms on the left-hand side, resulting in

2 - > '
{vz S1 ez B +vv] B - Ame f8_ [nﬁ] - Figv- Vv

Jfoe (1 w28 W
m 2 2 ez}’
_ Mot (-1 v} (12)
2
where the fact that 33-UZB = 0 was usged. The %5 << 1 approxima-
tion 1is walid for many situations of interest. If needed, more

terms in the expression can be kept, although what is outlined
below would become algebraically more complicated.

Equation (12) describes both the longitudinal and transverse
waves. In this dissertation we concentrate on the evolution of the
longitudinal wave. We asgsume that the wave is being driven by.
linearly polarized transverse waves of the form ?Bio ginlkgx -

wit), where i = 1,2 and w4 - wg = wy. The equation for E, reduces

to

Ve

3 v y 9 -
(5E§ + mp[i -3 €2 ez i'ez z;)]Ex = e4ne{5€ nvy, = RoveVvy

+ €

R vz o _ Foe vel) ) (13

B o2 ™ c

where ¢ 1is simply a small parameter used for bookkeeping purposes
{later to be set equal to unity).

To solve Eq. <(1i3), the formalism of Xrylov-Bogoliubov-

10




Mitropolsky27:28 was employed. The dynamical variables (Ey, Vy,

V,, n) are assumed to be of the form

e = e, cos y+ ) elejles, ¥ (14)

The quantities e, and ¥ evolve according to

ggg = eAqleq,¥) + €2h,(eq, ¥} + . . . (15)
::o = €Dyleq,¥) + €2Dyleq, ¥} + . . . (16)
%g = =ty * eByles, ¥y + . . . | (AT
gf = —Kgy + €Cqleq, ¥y + . . . (18)

The functions Aj By Cj and Dy are chosen so that e, does not
grow gecularly in time. In addition, we assume V - 93/9x, li.e., wve
have a one-dimensional system,

After some straightforward algebra, given in Appendix A, the

following equation is obtained:

{5€§ + ZY—_ + m%( - % g% legt? - % (af + u;))eoe1W}

G(lz

- 1%, . 1y
= v¢ s uf e FyLe '° (19)

where e, = eBx_ is the mnormalized longitudinal field amplitude,

!"flCu)p

11




_ SEy

ay = EEEI is the normalized field of a laser, ¥ is & phenomenologi-

cal damping term, and ¥g = (KyX = wyt). The full derivation and
its subtleties slong with a brief history is given in Appendix A.

We note that the €2V,V,E, term on the right-hand side of Eq.
(13) 18 exactly canceled by the €2V, 4V,oE, term on the left-hand
side of Eq. (13) when w, = Wy - These terms do not cancel but con-
tribute to an instabllity when «; = 2wp. This instabllity was first
reported by Rosenbluth and Liu.® However, their growth rate is in-
correct by a factor of 5/4 since they neglected the two previously
mentioned terms. The complete detalls are given in Appendix B
where the driving term for the growth rate is derived in both

Eulerian and Lagrangian coordinates.

IIBZ. Growth and Ssturation

In this section, as was done previously by others,8:%,22 Eq.
(19) is reduced to two coupled ordinary first-—order nonlinear dif-
ferential equations. We note that these are simply Egs. (18) and
(17). Although the details are not shown, they result from the
perturbation expansion given in Appendix A. However, we will
obtain Egs. (15) and (17) from (19) to be more illustrative. To
begin, we define ¥ = ¥, + ¢ and neglect for the time being Cthe

aj's on the left-hand side of Eq. (19) to obtain

. v
~2iwg (& + 16ey) — 2ivuge, + (wf ~ wgley ~ g wf oz ef = Foe™1¢

(20)

where second-order derivatives of the slowly varying e, and ¢ are




neglected. Separating out the imaginary and real parts gives
2046, = F, Sin ¢ + 2yage, (21)
200800 = (wf - whley + g wf g% e§ + F;, cos ¢ . (22)
which reduces to
6y = F 8in ¢ — yve, -~ (23)

eoé = fe, + Ced + F cos ¢ (24)

%% . _3 BVE a8

vhere F p '€ =16 wg o2 Wg 203 o -

of plasma wave growth is, therefore, reduced to two coupled equa-

The problem

tions in e,, the plasma wave amplitude, and ¢, the phase differ-
ence between the driving laserz and the plasma wave. The growth
depends on the normalized laser intensity F, the damping v, and 4,

the initial mismatch between the beat frequency w, and the plasma

frequency Wp,

ITB2a. Early Time Behavior

By early time it is meant that damping has not yet played a
role. This is true crudely for times less than a few 1/v. First
we note that if e; = 0 at t = 0, then cos ¢ 2> 0 instantaneously and
é, = F. The initilal growth is therefore linear in time as is well

kniovm. In addition, as shown by Tang et al.® a constant of the
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motion exists when damping is negligible and F is not a function of
time and it is
Ceg  Aef

ir-76
K = e, cos ¢ + F( 4 + 5

] (25)
When e, = 0 at t = 0, Eq. (25) becomes

Ceg Aey .
(F cos ¢ + a + *Eﬁ] = 0 (263)

and substituting Eq. (26a) into Eq. (24} gives
3
* Ced. (26b)

The maximum e, occurs when éo = 0, i.e., when sin ¢ = 0. There-
fore, the maximum e, = e is found by solving Eq. (23) for cos ¢ =

-1

Ced N Aem
4 2

-F =40 (27

When the beat frequency of the lasers is Wp (A = 0), Eg. (27) gives

en = [g—F)Us (28)

which is the result of Rosenbluth and Liu.B Furthermore, Tang et

al.® have shown that as a function of A the maximum ep is

14




1
en = {0 (29a)
and it occurs when
_ (2T pp)1/3 .
a = -{5 cr2) (29b)

For reference, we provide an expression obtained via a Taylor

expansion for ey, as a function of A, for A > —[%1 FZC]i/a

[55)1/3 _ [Zm ég_)1/3

C 21 F2C (30

en
Equation (27) in general has three roots, all of which are not nec-
essarily real. Importantly, and perhaps not surprisingly, Tang et
al.? numerically found that the physically relevant solution is
the smallest one, when e, = 0 at t = 0. McKinstrie and ForslundZ6
have recently shown this to be true on analytical grounds. As a
consequence, a discontinuity exists in the solution of Eq. (27

vhen Eq. (29h) is satisfied. To be more specific, when

27 1/3
A< - (% cFz) (31)
the solution for ey, is on another branch of the solutien to Eq.

(26a) for which

eq = (55]1/3 (32)
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when Egq. (29a) is sgatisfied. The reason that a small negative fre-
quency mismatch results in a larger peak amplitude is that it helps
to compensate for the relativistic frequency shift, which is also
in the negative direction. This fact is discussed in the previous
work®:22 go no further discussion will be given.

Throughout, we have referred to ep as the peak amplitude rather
than the amplitude at saturation. We do this because Eqs. (23) and
{(24) show that although &, = 0 at ey $ # 0 concomitantly. There-
fore, e, = ep only for an instant. The fixed point {(a center)
é, = 0 and é = 0 is only approached with the inclusion of some form

of dissipation, and this will be discussed next.

IIB2b. Late Time (Asymptotic Behavior)

The previous section addressed the so-called early time behav-
ior. In this section we investigate what effect disgipation has
on the asymptotic plasma wave amplitude. This issue was first
investigated by Lee et al.2% without the inclusion of a frequency
mismatch. It was found that for times much larger than a damping
time the plasma wave asymptotically approaches an amplitude, =a
factor 41/3 smaller than the Rosenbluth and Liu® peak amplitude.
The 1importance of collisional damping has already been found to be
important in some recent experiments.3° In this section we allow
for a frequency mismatch and we investigate how the asymptotic
amplitude is approached in time. It is important to know whether
it is approached in a monotonic or osclllatory manner.

It 1s well-known that the qualitative properties of the asymp-

i6




totic solution to a system of two coupled ordinary differential

equations of two functions (fy, fg)

f1 = ¢1(Fy, f); fo = éo(f], fp) (33)

can be obtained by studying the behavior of f; and fy near the

fixed points, i.e., polnts vhere

f] = fp = 0. (34)

We begin, therefore, by identifying the fixed points. The

starting set of equations are

é, = F sin ¢ - ve, (35)

esd = Aey, + Ceyd + F cos & (36)

It follows then that the fixed points (eg, ¢¢) are defined by the

equations
F sin ¢f = vyeg = O (31
heg + Ceg? + F cos ¢ = 0 (38)

Substituting the expression for cos ¢f obtained from Eq. (37),
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cos ¢¢ = (1 - sin2? ¢p)1/2 = {l —[Igﬁ)z}l/z

F
into Eq. (38) gives
1/2
Yeg, 2
heg + Ced + F{l - {59 ] =0 (39)
This can easily be rewritten to give
2A 1 F2
& 22 ol 4 e 2 22 - - =
eg + c ef + cz (A2 + v )ef cz 0. (40)

Since Eq. (40) is a cubic equation in eZ, we need to determine
the stability of the three fixed points and whether the stable
fixed points are nodes or spiral points.31 To determine this we
expand Eqs. (35) and (36} about (ef, sin ¢g). We let sin ¢ = y and

substitute into Egs. (35) and (36) the definitions

ec = eg + 8e and y = yg + &y 41)
to obtain

se = ~ySe + F&y + 0(8y2, Se2, &yde) (42)

8y = —%(3Ce§ + A)(CeZ + A) ~ y8y + O(8y2, 8eZ, Syde) (43)

f

where eg and y¢ are obtained from Eqs. (37) and (38)

We rewrite Egs. (42) and (43) in matrix notation to find

18




d Se -y F Se
= = |4 (44)
dt jgy ~5(3CeZ + M) (CeZ + A ~yi 18y

The stability of the fixed points is determined from the eigenvalues

A of the matrix in Eq. (44)., The eigihvalues are given by

(N + ¥)2 + (3CeZ + AY(CeZ + &) = 0 4%)
or
A==y & ( =(3CeZ + A)(CeZ + ay1/2 (46)

If the discriminant of Eq. (46) is positive and greater than y?Z
for some eg and A, then that particular fixed point is a saddle
point and essentially unstable.

To recapitulate, Eq. (40) can be used to determine ey of the
fixed point and Eg. (37} can then be used to determine the corres-
ponding ¢¢ (or yg). The stability and type of fixed point can be
determined from Eq. (46). Although general expressions for the
ef's as as functions of & and ¥ are possible, since Eq. (40) is a

cubic equation for eZ, they are so cumbersome as to be rendered

.f!
useless. Consequently, we investigate the relevant eg¢'s, A's, and

v's in various limits.

A=0

When the mismatch is zero the solution to Eg. (40) can be

19




written down formally as24.27

o (e G+ 5 T B - G 5971
4m)

This expression was first given by Lee et al.2% [Note that for

A = 0 there is only one real root to Eq. (40).1 The behavior for eg

can be crudely separated into two regimes by the parameter y. For

small values of v, i.e., when

Y6 F4 21173
ocE << gma or v <« [FuC) (48)
we find from Eqg. (47) that
1/3
er = (5) (49)

which could also be obtained simply from Egs. (37} and (38) or {40
in the A = 0 and ¥ = 0 limit. Consequently, as already stated, eg
is a factor 41/3 smaller than en- We emphasize, however, that the
actual solution to e, in the A = vy = 0 limit follows the Rosenbluth
and Liu behavior until t ~ 1/y, at which time it approaches the
asymptotic value eg.

To see this, note that Eq. (46) gives for the eigenfrequency

A= -y £ 1 (3 (CF2)1/3)1/2 (50)
Fy1/3
where eg = &5] was used. (When A = 0, X is always complex
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since the discriminant is always negative.) Estimating the time to
saturation as fﬁi gives tg = 1.8(F2C)~t/3, yhich is an excellent
estimate to the actual value of ~1.2(4)1/3(F2C)71/3.9 Since Im
>> Rex{==v), then the trajectory in phase space spirals around the

fixed point many times before it approaches it,

For large valuges of y when

y > {F2c)t/? (51)
Eq. (47) reduces to

o )

This is just the answer obtained when the nonlinear frequency shift
iz neglected. As in the small y limit, Eq. (52) could also be ob-

tained from Eqs. (37) and (38) or from Eq. (40).

When A # 0 there is the possibility that three real roots
exist. The condition for this will be discussed shortly. Further-
more, two of these solutions are stable while the third is un-
stable. The unstable root is always the middle one.27 In what fol-
lows we explore the ¥, A parameter space to determine the galient
values for damping and mismatch.

For convenience, Eq. (40) is rewritten in normalized variables
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2 1

g5 + % b+ 2o(b2 + 72)62 - 1z = 0 (53)
where
e - éf[%g)i/s’ A [_241 FZC)ifa E, and v = (%1 cm)i/:a;f '

Since Eq. (83) 1is a cubic equation in 6?, then the condition that

three real roots exist (if E? is always positive) 1s easily obtained

ag32

¥6 + 20272 + (A% + % AYYZ + %7<1 + A3) € 0 (54)
For a fixed ¥, Inequality (54) is satisfied neither for positive A
nor for any -« < A < Em (except for ¥ » 0 when Inequality (54) is
satisfied for all A < -1). Additionally, for real ¥, Eq. (54) with
the equality is only satisfied for two real A's.33 Therefore,
three real solutionsg for é? only exist between these A's. This is
illustrated in Figs. 2a and 2b where the solutions te Egs. (53) and
{54) are plotted. The plot in Fig. 2a is the well-known tuning

curve for a cubic nonlinear oscillator.27 The inequality given by

Eq. (54) is equivalent33 to wusing Eq. (53) and the condition

_ - a - ~
4 2 4+ E(AZ 2y =
ez + Zﬂef 16(& +y2) =0 (55)

The requirement that the eigenvalue )\ be 0 is identical to Eq.
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Figure 2. In (a) we plot the real solutions to Eq. (53) for

¥ = ,25 and (b) we plot real solutions to Equality
(54).
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(55). This is due to the fact that an unstable root only exists
when three solutions exist, so the threshold conditions are
identical.

It is clear from Fig. 2Zb that at most two solutions satisfy the
equality given by (54). Furthermore, as the normalized damping
increases, eventually Inequality (54) cannot be satisfied for any A.
This value of ¥2 can be analytically determined from the condition
that the discriminént, when solving for €2, of the solution to Eg.

(55) vanishes.33 Thisg gives

Substituting these expressions back into Eq. (55) gives ¥ = .458.
The maximum value of &¢ for a particular ¥ 1is also easily

determined. From Eq. (37}, eg = g sin ¢f, so the maximum ey is g

2
and from Eq. (38) this occurs for A = - gg—. In normalized units
- i
these are eg = %$ and A = - %7/%2. These could also be obtained

from the condition that dE%/dA = (.33 We note that in general A =
~-4/27 ¥2 is close to the most negative A that satisfies Eq. (54).
When only one solution exists for ey, no confusion arises as to
the agymptotic evolution since for this case the fixed point is
unigue and stable. However, when three solutions exist with two
being stable, it 1is not obvious a priori which stable fixed point
is approached for a given initial condition. To solve this problem
we need to determine the basin of attraction3% for each fixed point

as functiong of A and y. However, we are interested in the partic-
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ular initial condition ey(0) = 0. For this case we present argu-
ments, which have been checked  in a limited fashion numerically,
that rely on the work of Tang et al.? They obtained, as discussed
earlier, in the absence of damping, the maximum value of e, as a
function of time (eyp) for the initial condition ey (0) = 0, If
damping is included, it seems reasonable to assume that e, should
gtill be an upper bound. Therefore, for a given A and vy, if a
stable fixed point ef exists such that eg > ey, then it is not ac-
cessible when e5(0) = 0. Therefore, the mismatch A = {~ %1F2C)1/3

or B = -21/3

is still a significant A. It can be shown that the
largest A for which Eqgq. (54) is satisfied is always larger than
A = -1, which is larger than -21/3_  Hence, there is a region in A
space where two stable points exist with smaller amplitudes than
€. For these situations we have not, as vyet, determined the
basins of attraction as paraﬁeterized by A 2rd Y.

Qualitatively though, the inclusion of damping can be thought
of as decreasing the mismatch (making it more negative). This can
be geen from Eqs. (37) and (38). In Eq. (37) the negative mismatch
negates the positive cubic nonlinearity allewing the driver and the
plasma wave to remain in phase longer. However, as shown by Tang
et al.? if the mismatch becomes too negative (A < =21/8) then ¢ is
initially go large that F sin ¢ decreases rapidly enough to prevent
CeZ from ever becoming larger than A. When damping is present then
e, will increase at a slower rate for a given A. Thereforé, with

some damping the threshold A, for which é is always negative, is

less negative than for vy = 0. This description is observed numeri-
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cally. Currently, we are attempting to quantify the above descrip~
tion.

Last, we investigate the dependence of ey as a function of v
for A = -21/8 gince, as just argued, this is the A for which eg is
largest when ey(0) = 0. When y is "small" the value of dE%/dE = -
3/4; which is not a function of A or ¥. Since 82 = 1 when & = -1

f
{(for v = @) then

— 3 - 1
2w o 2 =
ef 4 A+ 4 (56)
for A < ~1. Therefore, Ef(ﬁ = -28/8) = 1.1. As y is increased,

eventually the most negative A for which three real solutions exist
equals ~21/3,  The value of ¥ for which this occurs can be deter-
mined by solving Eg. (54) and this 1is presented in Fig. 1b.
An approximate wvalue for this ¥ can be found by utilizing the fact

that the most negative A is very close to the A where ef =

=3
Earlier it was shown that ey = % 7 when A = E%%g. When A = -21/3,
it follows that ¥ = .34, which is very close to the exact value ob-
tained from Fig. 1b. Additionally, for this value of ¥, ef = .97,

vhich is not very different from the vy = 0 amplitude. This wvalue
for ¥ is also very close to the wvalue above which only one real

golution exists, ¥ = .458.

IIB3. Rise Time Effects

Until now we have assumed that &«; and &7, i.e., F were constant

in time. If this assumption is relaxed, it could alter the resgults
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in two ways——the first being the nonlinear frequency shift due to
the relativistie corrections to the electron's motion in the fields

of the lasers. Recall that the total nonlinear frequency shift is

du = ¢ = - gg tegl% - %(Iallz + {agl?) - F cos ¢ (57

162 “f “5
When ¢y = &z, then F = —z = = = gz S0

dw = - %g legt? - F - F cos ¢. _ (58)
If &4 and ap are constant in time, then the contributions of «j and
&g to 8w as shown in Eq (57) can simply be renormalized out.

The second way a non—constant F c¢ould alter the resultg is if
the value of ey 18 reached during the rise time of the lasers. In
this case ep depends on the instanteous value of F. To investigate
both rise time effects we start from a slightly modified version of
Egqs. (25) and (Z6)

8o = F sin ¢ - > cos ¢ (59)

*

eoé = fe, + Ced + F cos ¢ + % sin & {60)

The ¥ terms appear naturally in the perturbation analysis given in
Appendix A. As in Ref.16 , we multiply Eq. (59) by cos ¢ and Eq.

(60) by -sin ¢ and add these equations to obtain
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%E(eo cos ¢) = - Aey sin ¢ - Ced sin ¢ - % (61)

da
We next use Eq. (59) and define A = A, + F, where e 0, to find

dt
d. F . 2% Aged Ced
dt{eo cos ¢ + > + 2 + oF + o )
hoeZ Ced Aoe, e, Ced ) B
[ZFZ vt (p v et aE) oS L (62)

For most of the growth time cos ¢ << 1 and since gg << 1, then

Ageq hyed Ced Ced

— << P ———

oF oF2 and Z << ZFE (63>

allowing Eq. (62) to be rewritten as

el
g_(eo cos ¢ + £y 59

ﬂoeg Ceg
dt 2 *

TR T oar

Aoed Ced e, .
(Forz * a2 * 5 cos §JF = 0. (64)

We assume a priori that the last term does not, to lowest order,

effect the evolution of e,, so that e, cos ¢ can be approximated as

The last term in Eq. (8&) then becomes

Aoeg Cef g ef  fpeg  Cedy .
(GFz *ar2 "4~ 3 ~ 4F " &F JE | (65
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In general, F << 1 and eg/F2 << 1, so

Aye’ N 8,63 Ceg . Ced Ced
2F2 4F ' 4F2 8F °

4F2
Expression (65) can therefore be rewritten as

Aged Ced, .
Corz * ara)F

permitting Eq. (64) to be approximated as

d F
dcleo cos 6+ 5+ 2 2F * WF 2F2

We next note the following:

d_ Ced _ Ceg de, ( ed dF

dt 4F = F dt 4 F2 dt °

The ratio of the terms on the right-hand side is

QF"”‘@
gt ©
- de, °
4F o

R

Since for most of the growth time sin ¢ = 1, then from Eq. (25) the

FF << F, and ==2 >>

F, e85, %°8 933) [9935 .

Cegd
42

e
4

JF =0

ratioc R excluding the numerical factor can be replaced by

dr
at S dt F
F2
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For a large class of monotonically increasing functions, the ratio
r for a finite F is = 1 until 4F/dt » 0 for a finite F. To show

e—(t—to)/c! which

this we solve Eq. (87) for r =1 and find F = F,
can be used as a reasconable fit to many monotonically increasing
functions of t. Another example is if F = Fot“ then r = n/{(n+l),
which tends to unity as n gets large.

If r = 1, it then follows that

cedar 14 Ced
4 F2 dt 3 dt 4F °

A similar argument can be used to conclude

8 9 daF _ d_ 80°8
2 FZ dt dt 2F °

In vhat follows we assume the lasers' intensity, i.e., F rises
monotonically from 0 to F, in a time T and for t > T it remains
constant at the value F,. (If it decreased after T then the values
we calculated would be lower bounds.) There are now two situations
to study. The first is that when the plasma wave reaches its peak
amplitude for some saturation time tg > t while the second is that
when tg < . (This is not necessarily the logical order.)

For the first situation (¢t > 1, F = Fy), Eq. (64) becomes

8, Lok, Ceb, 1Bl , CeBD)  Fo) (68)

-2 4
€ COS ¢ * 3 Y ok, T IR, 2F, ¥, 2

where e, (1) = fT dt F(t). The term in brackets is an upper bound
o
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since the integral was carried out for times when dF/dt = 0.
Furthermore, the term in parantheses, no longer being a function of
time, can be relabeled as a constant k, resulting in

A Ced
e§ , Bged  Ceg

5 7F, aF, + kK = 0, {69)

€, cos ¢ +
When e, reaches its peak amplitude, by definition é, = 0 or

F sin ¢ — g'cos $ = 0. For t > 1, F = 0 so when

éo, = 0, sin ¢ = 0 or cos ¢ = -1. It then follows from Eq. (63) that

the peak amplitude e, is given by

(Ag + Fo) ce4
. wp . CB8
€ * " ar. B+ ap, t KO (70)

We next assume that k represents only a slight perturbation in Eq.
(70). The amplitude e,, considered as a function of k, can then be
obtained via a Taylor expansion

deg
dx

From Eq. (70) we obtain

de, 1
dk Aey, Egﬁ
F F

(71}

For A's (A = A, + F) of interest, the denominator is less than -3.
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Hence, the absolute value of the correction to ey is smaller than

1 Aped () c. ed() Fy
s Tt R ) Rk

The largest possible percentage correction to ey occurs if tg ~
T. Formula (72) would then be gm implying a 16 percent negative
correction. Therefore, in general for this first case where tg >
T, the peak amplitude e, does not depend on the form or the exis-
tence of the time dependence of F, just on the final value F,.

We next discuss the second situation where saturation occurs

for a tyg > . Using the assumptions that r = 1 and tg < <, Eq.

{(68) gives
F . €8  Hoed  Cej
+ T — " =
e, cos ¢ 2 2 F + 37 0. (73}
If F <« F, then as before when é, = 0, cos ¢ = —-1. Hence, satura-

tion occurs vhenever e, reaches a value such that

Fltg)  eflty) eg(ty) Cel(ty)
Teolty) T T T Yl Rk T TR ()
L
We assume ey(t) = Io dt'F to obtain analytic expressions. This is

true except for t = ty (as sin ¢ = 0). The value of tg is found by
determining the value of t that satisfies
tg 2 Lo , .12
Fltg) [fo dt'F(t')] 24, [ [ aeFee ’]

ts
= J A EEty ¢ 5 s 2 - Fio)
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t 4
[f Sdt'F(t')]
8]

¢ L
* 3 T = 0. (75)

The value of €, is consequently

£
§g & f;sdt‘F(t'). (16)

If Ay = 0 and we neglect the F/2 term, Eq. (75) can be reuritten as

3F<ts)]‘/3

fﬁsdt'F = [ c

(D

So &, saturates at a time tg when e, is equal to its instantaneous
"Rosenbluth and Liu" peak value. If A # 0, then the instantaneous
“Tang et al." value would be used.
To obtain some scaling laws, we assume the trial function of
t2
F = F, 5 and find

€2

wptg = 2.38(0y0)8/7 a2/ (18a)
and

t
€ = [ CdtF(t) = 4.5 Fi/ T2/, (78b)

1/3 1/3
In Refzs., 8 and 29 we used [ﬂi] rather than (%E]

C in Eq. (TD)

and this accounts for the small numerical discrepancies (~ per-
cent). The formulas in Egqs. (78a) and (78b) agree well with pre-

vious simulation results 3:8:30,31 and those to be presented later
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in Chapter III.

IIB4. Phagse Velocity Shift

In regard to phase velocity shifts, the arguments used by pre-
vious authors?® is that since wg - $ represents the frequency shift
and since k 1is assumed to be fixed, &vy = (@, - $r/xk = sw/k.
Taking this expression seriously leads erroneously to the conclu-
sion that a plasma wave excited by Beat Wave Excitation could never
lead to sgignificant acceleration. To see this we quote a result
first derived in Ref. 6 That 1is, the maximum energy gained in a

single stage of the PBWA is
QeoY¢3 mc?. . 79)
Since v is now a function of e,, hence so is Yo- Furthermore, for

large vg, Yy changes by large amounts for small changes in vg. This

is eagily seen from

le

dy vy SV VSV Y¢36v¢
6Y¢, = avi; 6V¢ = Y¢3 ¢ ”"E‘Q - ] e c . (80)

As a result, small changes can alter the maximum energy gain by
enormous amounts.

Using the expression for & given in Eq. (26b) gives

2= By = Y%Q(l - 2= e7) (81)
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where vy = wo/Kg * Vgo- It follows therefore that

N
it
——
-]
¥
I
]
| ——
]
ot
1l
-t

42 = 1 - 220(1 -2 eg]] (82)

(1 - 35 g% gég eg]. (83)

SR

w,

We have assumed that vy, = 5%. For large «;'s, the value of vy,
is larger due to a nonlinear decrease in the index of refraction
of 1light. The maximum energy gained as a function of e, occurs

when

lﬂ-

d h)i 9 9_‘]5 “50 ]
m———n 2 = — - e - -

This occurs for

eg = [g% g% - ﬁgg)ifz N gf _ (85)
If this were true, then the maximum energy gained would scale as
wg/wp(me?) rather than wf/wg(mc?).

Fortunately for the future of the PBWA, the above analysis has
one important error. It was assumed that ¢ was a function of time
only, while in reality it 1is alsoc a function of pogition. We
argue, henceforth, that ¢ 1s instead a function of t - x/vg, to
lowest order. We can do this because in a cold plasma one point in

the plasma is not influenced by other points, so only the driving




force will cause epatial variations. The driving force's envelope
moves at the group velocity of light Vgor S0 t - x/vgo is the
appropriate variable,

The phase of the excited plasma wave nov has the form
KoX = wot + $ix,t). (86)

The phase velocity is therefore derived from

g;[xox - wat + ¢lx,t) = 0] = > KoVg = o * %% + vy g& = 0. (87)
As a result
93¢
Vo = —-~“§§ = Vgo 1 . (88)
Ko ¥ ax e Ko @

Using the fact that ¢ is a function of £ - gé; gives

3¢ _ _ _1_2¢
oax =~ Vgo ot (89)

We can therefore uwrite

L -1 26

Vg =V 2o at) (30)
¢ - Téo 1 Voo B¢
[ Wo Vgo Bt)

Recalling that vg, * Vg, then from Eq. (90) we see that vy = va,.
The conclusion is, therefore, that a nonlinear shift in x arises

arises that compensates for the nonlinear shift in @ enabling the
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phase velocity to remain constant.

IIB5. Harmonics

In this section we briefly comment on the issue of plasma wave

harmonics. The presence of harmonics gives rise to nonlinear wave
steepening (but not to any nonlinear frequency shift). Noble22
used a different approach to obtain the nonlinear waveforms. He

used asyvmptotic expansion about the exact solution to the undriven

nonlinear differential equation. His solution was consequently in
terms of elliptic functions. We prefer to use an expansion in
terms of sinusoids. In fact, we find that retaining the first

three terms in the asymptotic expansion is adequate to describe the
nonlinear character of the wave for many pump strengths of interest.
From the perturbation analysis in Appendix A, expressions were

obtained for e4 and ep as functions of e, and they were

e; = % eZ sin Z(KOX - Wt + ¢) (91)
e, = - gz ed cos S[Kox = Wt + ¢). (32)

The value for the total longitudinal electric field is, therefore
eO
E, = eo(cos ¥ + o= sin 2§ - 2z eZ cos 3y + O(eg)). {93)

The importance of the correction to E, from e, can be easily esti-

1

mated recursively. Taking the derivative of Eq. {(93) and setting
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it to zero yields (e can be neglected when calculating yp)

—ein ¥y, + e, cos 2y, = 0 or (94
Coaintfe Aol oL, Y2
¥y = sin [— ges *t 5 (g2 * 2) ]. (95)

The amplitude

a2
Ex = €, COS §p + 5= sin 2 ¥y - %E ed cos 3y (96)
can be obtained exactly for a particular set of parameters. To

ascertain a scaling law, we assume that e, << 1, then Eq. (95)

gives ¥, = e,. It follows then that

_ eZ 9 23
Ex = e, co8 ¥y + 5 sin 2 Wy — 64 ed cos 3y, = eo[i *ea eg)
(97
23
The percentage increase to Ey, is ~64 eg. If it is ever necessary,

the contributions from higher harmonics c¢an also be formally
obtained.

The ratio of the second harmenic to the fundamental for the
electric field is % ¢, as ghown in Eq. (113). The ratio is dif-
ferent, however, for the potential and the density since ikéi = |EI
= ,Béﬂl. The ratio is ¢;/¢, = e,/4 for the potential, and the ratio
is ny/n, = e, for the density. Since the second harmonic is twice
as large 1in the density as the electric field, it might appear

that the percentage increase to the density would then be twice as
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large also. Thig is not the case, hovever, as the percentage
increase to the density is much larger. To¢ see this we simply note

that since

el
E = e, cos ¥ + ;°sin 2y, (98)

the total perturbed density is
n =n, sin ¥ - nZ cos 2y. (99)

The value of ¥ that maximizes n is ¥ = n/Z2 vhere, as it hap-
pens, both sin ¥ and -cos 2§ obtain their maximum values. As a re-

sult, the maximum n becomes
n, = Nl + ny) = e (1 + ey)

which clearly illustrates that n, is much larger than Ey .

We now derive37 from simple arguments the absolute maximum and
minimum values for the density. We only use Ampere's Law, Gauss's
Law, the fact that all fields are only functions of the variable ¥
=z x - ct, and the fact that v is limited to ~c < v < ¢. ©&o

3 d

] _ d oo o ¥
gt B+ 4m) = 09 G E - 4neN g = 0 (100a)

3 - d —
-~ E = 4ne(n, -N) =» a;*E = 4nel(ng + N}. (100b)




Subtracting Eq. (100a) from Eq. (100b) gives

Hence,

N=r""7= (101>

leading to the conclusion that

H(Z:D
-5 { N < (102)
A point of interest is that when v = Vs which in this case 1ig
v ~ ¢, the wvave i1s defined to be in the wave breaking state. A

formula often quoted for the associated cold wave breaking wvalue
for the electric field is mcwp/c. However, Akhiezer and Polovin37
showed that the correct cold wave breaking wvalue for the electric

field is

%(Y¢ - 1)Y%, (103)

e
This indicates that for relativistic phase wvelocities, 1.e., 74
»> 1, electric fields considerably larger than mcwp/e are
theoretically possible. In practice, thermal effects will, in
general, keep the electric field below mcmp/e so the often-quoted

result is still a good guide.
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1IB6. Pump Depletion

As the plasma wave is excited, the energy of the pump waves is
necessarily depleted. The depletion of the pumps for practical
reasons should not occur in distances less than that needed to ob-
tain the maximum possible electric field Egp. On the other hand,
for maximum efficiency the depletion distance should not be larger
than the acceleration distance so that most of the energy of the
pumps is not wasted. The considerations outlined above are crude-
ly quantified below following the same procedure used in Ref. 35.

We begin with aﬁ equation that represents energy balance

LpAp E§ = cteAg(E + E2) (104)

vhere Lp is the length over which the plasma wave is excited, Tg
is the laser pulse duration, the A's are the crogs—-sectional
areag, and the E's are electric fields. We assume Ap = Ap and
normalize the E's to get

Lp ef = ctg 262 (105)

go %

Since Lp need be no longer than the distance for maximum accelera-

tion, we set it equal to

mwé ¢

wh up

Ly = ZﬂYg S = In addition, for e, we use

P @p
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ey = (%ﬂ F) (a§ = 4F), resulting in

wf ¢ (64)2/3_ w§
2 32 op (37F)" "= cvq ®F 2 (106)

or
n (6 2/3 c

= L0 (o4 173 &

crg = 5 3 F1/9 5 (107)

We estimate Tp crudely as the time required for e, to reach ep for a

constant F. This can be approximsted as®

~ 1.2(8%) " Ppasa, (108)

WpTy 3

We substitute Eq. (108) into Eq. (107) to obtain

z/3

(gﬁjila Fr2/s = B (84)7 p-1/s (109)
Qr
F = (g;]a (&)(1.2)3 x .1, (110)

The conclusion is that for maximum efficiency F = 1. and that
CTlp = 13c/mp .

The above estimate may at first glance seem too c¢rude since we
assumed that F was constant in time when calculating tp. However,

the effect of pump cascading has also been neglected. Pump cas-
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cading refers to the generation of electromagnetic modes at fre-
quencies *nw, from the original pumps. This subject, although
done in another context, was first investigated by Cohen, Kaufman,
and Watson.13 They found that if all light waves were approximately
at the same frequency, wp >> wp and dispersion was neglected, then
the driving force ¥ of the plasma wave 1is constant. When such
assumptions are made, however, energy 1s no longer conserved.
Although it is difficult to rigorously prove analytically, it
appears that even when energy is conserved the phenomena of cas-
cading results in a more constant driving force.

Recently Horton and Tajima3® have addressed the issue of pump
deplection in the PBWA. In their work they neglect the cascading
and are therefore able to obtain some analytical expressions since
they are dealing with a three-wave gystem. On the other hand,
Karttunen and Salomaa3® have addressed cascading as it applies to
the PBWA following the original work of Cohen et al.1% They assume
there to be an infinite number of waves all with the same frequency
Wy, > Wy and they neglect dispersion to obtain analytical expres-
sions. They find that freguency cascading 1is approximately
symmetrical in the + and - directions. If energy is conserved, then
for appreciable efficiency cascading mﬁst be in the -~ direction-in
order to conserve photons (Manley-Rowe relation). If cascading is
in the - direction and dispersion is included, then the phase
velocity of the plasma wave might decrease in an average sense.
Since the phase relationship between each pair of light waves is

different, the coherence of the plasma wave might also bhe affected.
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The analysis of cascading'is further complicated by the necessity
of including the higher order coupling such as that shown in
Appendix B. The 1issue of pump depletion and/or cascading and
efficiency is, consequently, not completely resolved. This area is
one of the most d1mportant unresolved issues 1in Beat Wave

Excitation.

IIB7. Inhomogeneities

In the previous sections we have assumed that the time invari-
ant part of the plasma density N, (the ion density) did not vary
with pogition. Within the validity of linear theory the differen-
tial equation that describes the excitation of the plasma wave in
a cold plasma, when formulated in Eulerian coordinates, 1s easily
extended to inhomogeneous plasmas. {In Lagrangian coordinates the
linear assumption has a different meaning.) The resulting partial
differential equation is easily solved because of the absence of
spatial derivatives. Therefore, the differential equations can be
solved at each position independently of the other positions. In
other words, in a cold plasma there 1is no communication between
different positions in a plasma. Plasma non-uniformities of
interest are density ripples resulting from ion waves, ion noise,
and long~scale length density gradients. We next briefly discuss
each in turn.

The effect of sinusoidal density ripples on plasma oscillations
has been studied previously through theory and computer simulations

and recently experiments.49 Dawson and Oberman4? investigated the




damping of dipole plasma oscillations with uniformly distributed
digscrete ions. Subsequently, they dewmonstrated%3 that the
presence of coherent ion waves would lead to a considerably larger
damping rate. Their theory includes kinetic effects and assumes
"steady state."

Kruer44 and Kaw, Lin, and Dawson,%5 on the other hand, solved
an initial value problem for a single ripple and then made ad hoc
assumptions concerning kinetic effects based on simulation results.
For illustrative purposes, we follow a procedure analogous tb that
used by Kaw, Lin and Dawson.#45

In the presence of an ion ripple, the model linear differential

equation for beat wave excitation is

.a._.z.... + 2 1 + _QD. 3 = § -
3Lz mpo[ fio sin KX) Ey = Fg sin (Kgx = wyt). (111)
We have neglected relativistic effects since we are interested in
the early time, e.g., linear behavior. The solution to Egq. (111}
can be written down explicitly since spatial derivatives are absent

and for the initial conditions

E 1 = aE"l it
X{e=o = 8t |e=o} T 18
Fo sin ¥  Fy 8inl(kex — wpt) (Wy ~ wp)Fy €08 KX sin wpt

B T o -wg | wp- o 9 o - o

(112)

wvhere
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m% = m%o(l + ¢ sin kx) and € & —.

Hi

We next define A mﬁ - w%o and 8§ = Wy = Wpg-
It follows then that

A = w%o € sin kX (113

and after Taylor expanding that

€ 2
8 = wpo(l + € sin kx) /% Wpo = 929— sin kx - %H Wpp Sin? Kx + ..
2
= A L5, oo (114
Zung m§08

We set w, = wpy and use Eqs. (113) and (114) to rewrite Eq. (112)

az
Fo Fo
Ey = 3 sin ¥, — A (sin ¥, cos 8t - cos ¥, sin 60)
(115>
+ s_ EQ {(gi St +
up A COS KoX{(Sin wpst cos 8t + cos wppt sin ot).
In the limit that € + 0, Eq. (115) becomes
Fot Fo . .
x = 56; cos ¥, + or {sin §¥5 ~ sin ¥g) (116}
po
vhich describes the well-known secular growth. The terms on the
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right are necessary in order that %% £=0 - 0. We define §, = (Kyx +
wpt).
To obtain useful analvtic expressions, we keep only the lowvest

order term in Eq. (114), With this substitution, Eq. {(116) can be

expressed as

F F @
Ey = EQ sin ¥, = Eg sin ¥, 5: Jn(% wpt} COS NKX
s

Fo £
+ A Cos WOEj Jn(E wpt) sin nkx

1
Fo 1. . e
T wga (sxn ¥o - sin Wo) _AJn(é mpt] CO8 nKX
00
£ .
+ cos ¥, + cos WO)S: Jn(ﬁ mpt) sin KX] (117>
-~
or
Fq e ¢ .
Ex = —A‘ [Sil’] ‘IJ'O - Z Jn("“z'“ mpt]31n (t}fo - nxx)
=

- 5(2; Jn(% wpt]sin (§, = nkx)
w®
=Y In(5 wpt)sin o - nxx)}] (118)
-0
where the identities
w0
cos [t % Wy sin KX) = Ej Jn(% wpt) C0S NKX (119
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m .
gin (t 7 Wp sin KX E— Jn[_ wpt sin nxx {120)

are used. In order to reduce Eq. (118) ipnto a sum of coupled modes

we need to use the expression
2 :
A- Esinkx T € sin [(2j + Dixxl. (121)

Substituting Eq. (121) into Eq. (118) gives

F
Ex ""e?' [}j cos LY, — (2 + Likx] — cos Ly + (27 + Dkx]
j=e
E
- i_mjn(é‘”pt) ;Z {COS [yo = (n + 2j +1)kx]

- cos {§, - [n - (Zj + l]Kx)}}

-~ go { Em Jn Emp [sin (¥, — nkx)] — sin (Y, — nxx)]}.(iZZ)
By

Recall that the main purpose of the preceding analysis was to

determine what effect a static density ripple has on the evolution

of the mode with phase velocity wy/K,, i.e., modes with ¥, in the

argument of the sinusoids. We Jlabel this the fundamental mode.

From Eq. (122) we find that the fundamental mode evolves in time

according to

8

2F
2
““po j=o

Jog+q {% mpt] cos ¥, - gOJO(% wpt][sin ¥, — sin wo}.
(123

¥l|
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As before, the term on the right is required to satisfy the chosen
initial conditions. From Eq. (123} we extract two important points.
The first is that the fundamental mode, i.e., the mode with phase

velocity wy,/K,, has a maximum value of

2
Exlyy) = 734 — (124)
Euwno
o 1 ,

where .734 is the maximum value of gzo Jan+1(¥) = 5 fz dx'Jo(x").
For parameters of interest, Eq. (124) can give a value for E,
significantly below that of relativistic saturation. The second
peint is that the time at which this maximum value is obtained is
given by

EWpTg 4.8
2 = 2.4 % mprs = 5 _ (125}

o0
vhere the maximum of §=0 Jop+4 (X)) occurs at the first zero of
Jolx}y, x = 2.4. We note that if J, is expanded (the higher order

Jp's do not contribute at early times) for small t, we obtain
E, (§) = Eot cos ¥, (126)
X T2 o

which 1s the early time se;ular growth. Our physical explanation
is that given by Kavw, Lin, and Dawson.%5 As the fundamental mode
is excited it couples to the ion wave and excites plaswma waves
with wave numbers at Kk, £ nk. The coupling represents a loss of

energy for the fundamental mode. The amplitude of the fundamental




mode is bounded because eneregy 1s being lost to mode coupling
faster than energy is being extracted from the pump. The evolu-
tion of the other modes is alsc given in Eq. (122).

Before we proceed we will briefly describe the valildity of our
gimple yet surprisingly revealing treatment. The first issue is
the wvalidity of our starting linear differential equation. We have

dropped the terms

(B - figv o= ) (127)

while retaining the term
m%o £ sin xx E. (128)

We do this because nonlinear terms in expression (136) con-
tribute no response at freqguency Wy until the 3rd order. There-

fore, crudely speaking our model equation is valid if
£ > EZ, (129)

which is satisfied for many situations of interest. Furthermore,
numerical studies indicate that condition (4129) is actually too
severe. Another igsue is the dropping of the higher order terms
in Eq. (114). This is justified if

2

£ il
= 2 LR
8 Wpo £t sin%4 kx < 5 {130

50



The preceding inequality is always satisfied for times wup to
and including the saturation time given in Eqg. (127). This state-
ment, based on physical grounds, assumes that € 1is always 1less
than unity.

Last, the treatment presented here has neglected thermal
effects (both fluid and Kkinetic). Although no details will be

given here, we briefly comment that the thermal effects reduce the

amount of «coupling described earlier. A more comprehensive
treatment is found in Ref. 41. The fundamental mode consequently
saturates at a higher level than in the cold plasma case. In

particular, we find that the saturation amplitude (neglecting
relativistic effects) of the fundamental mode scales linearly with
the temperature. The reason that thermal effects reduce mode coup-
ling is that the modes with high n (i.e., large k) have a signifi-
cant Bohm Gross frequency shift and, hence, are not resonant. Kaw
et al.%#% called coupling with thermal effects quasi-resonant mode
coupling for the undriven case. Further details can be found in
Ref. 40. Additionally, we find in some preliminary kinetic simu-
lations that for initially cold plasmas the slow (higher n) modes
heat the plasma so that eventually only a few modes are nearly
resonant.

In the preceding analysis the effect of a single coherent ion
wave on the amplitude of the primary wave was considered. When
many ion waves are present (a spectrum) the formalism described

above remains unchanged. In the formulag for A and 8 the term ¢
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sin kX is simply replaced with a summation % €5 (sin Kj X * ¢3).
Dawson and Oberman43 treated a related problem from a different
perspective. They calculated the effective damping of a sgpectrum
of ion waves on a long wave length (dipole) electric field. This
damping mechanism has the following physical origin. Concommitant
wvith the electric field (E,) there exists a fluid velocity (vq).
This velocity couples with the density spectrum to generate a cur-
rent spectrum (jg). The current in turn induces an electric field

(Egl. The energy dissipated (jg, Eg) is then equated with the

energy lost (3/8t)/(EZ/8I) to give an effective damping rate

wg, 8ny 2 1
LA 2: ' fip| Im elwy, Ki) (131)
1
Horton and Taliima%6 obtained a similar expression. They
ignored kinetic effects and used a renormalized €. Implicit in

these calculation was, however, the asszumption that the wvalues of
Eg resulting from jg are steady-state ampiiltudes. Consequently, if
other processes occur before the electric field (Eg) reaches its
steady-state value, then the ensuing damping rate will not be given
by Eq. (131). If the damping given by Eq. (131) is found to apply,
then it could be used as the phenomenological damping used in Eq.
(37).

Last, we briefly discuss the effect of long scale length densi-
ty gradients. If thermal effects are neglected, then, as before,
the problem becomes trivial in the linear limit. To see this we

find it most convenient to reseort to the Lagrangian descriptions,
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For a time invariant density profile, the differential equations
describing the evolutions of plasma oscillations for an arbitrary
driving force is
2 2 +E
ggg g o+ 4087 Ji° dx' ng(x') = F (132)
0

where E{x,,t) is the displacement of a fiuid element from its equi-

librium position. We assume ng(x) = no[l + 5) to obtain

L
[35 + upof1 + Yo e+ 2= F (133)

If the displacement is much less than the scalelength E << L, the
last term on the left—hand side can be neglected. As before, the
excitation can be treated locally as long as thermal effects do
not matter. This is observed in the computer simulations which

appear later in Chapter IIT.

IIR8. 2-D Effects

The description of Beat Wave excitation given previously in one
dimension is waltered in two important ways when two-dimensional
effects are considered. (We ignore transverse instabilities of the
plasma wave4? and lasers43 1in this section.) The first occurs
because n and E, are no longer proportional to each other and this
is inherently a nonrelativistic phenomenon. The second occurs
because the relativistic detuning is different for different radial

positions (assuming a radial dependent pump). This effect is
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important whenever the saturation time is amplitude dependent.

The first effect was first discussed in the context of the
plasma wake field accelerator.49 Recently Fedele et al.3% studied
radial fields in cylindrical coordinates as they apply specifically
in the PBWA. Their results c¢an be summarized as follows. 1In the
linear 1limit it can be easily shown that the scalar potential
possesses the same transverse profile as the ponderomotive poten—
tial. Consequently, E,, being proportional to ¢ in the linear
approximation, has a transverse profile that also follows that of
the ponderomotive potential. On the other hand, EY and n have more
complicated transverse profiles as they depend on ftransverse
derivatives. The precise form for EY and n depends on the details
of the transverse profile,

The second effect was uncovered by two-dimensional simula-
tions.3-13 The evolution of e, and ey is described by three
coupled differential equations.53% To 1Jlowest order, however, we
assume that the evolution of e, does not depend on the evolution of
ey, i.e., we assume E, >> Ey. This is tantamount to the neglect of
transverse derivatives. Therefore, the variable y simply becomes 3
parameter in the equation for Ey. Recall from Egs. (25) and (26)
that in absence of rise time considerations the evolution of the

envelope of E, is described by

€oly) = F(y) sin ¢(y) (134)

eo(y) $(y) = Ceg(y)3 + F(y) cos é(y) (135)
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where the y dependence is explicitly shown, The final maximum

amplitude is therefore
173
(a B (136)

and the time it takes to reach this value can be crudely estimated
to be

tg =

( 4 )“3 (137)

F(y)2C
by assuming the secular growth until saturation. Since tg scales as
F(y}™2/3 on the outside of the laser beam where ¥ is smallest the
plasma wave potential and accelerating electric field will
saturate at a later time. This means that the potential will
develop shorter scalelength transverse variations than those of the
ponderomotive potential. The resulting transverse electric field
Ey will now exhibit a more complicated spectrum of focusing and
defocusing fields than those predicted from the Ilinear calcula-
tions. To illustrate the development of the short scalelength
perturbations, we first assume a solution where y is treated as a

parameter,
¢ = doly,t) sin [KgX = wot = [dt Awgly,t)1. (138)

The radial, i.e., Ey field is then given by
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3,
= 5y Sin [Kox = ot - fdt twgty, 6]

- (Idt g%y do €08 (Kox — wot - Awyt). {(139)

9o
oy
< Kgbp?., then the first term in Eq. (139 1ig small. {This 1s the

Since transverse derivatives are assumed to be small (when

linear correction.) The second term, however, increases monotoni-
ically in time, so even though (8Mw)/(dy) is small, a time t,
exists such that [Sfdt(3Aw)/(dy) is finite, Specifically, Ey will
become of the order of E, when

wp te = <(%$9]§1, (140)

or for Aw due to relativistic frequency shifts

t. = 32
Op Yo ® gaye

(i41)
At this time our assumption that E, >> EY breaks down, so the

full set of coupled equations must be used. The analysis presented

asbove, although not rigorous, 1s remarkably consistent with

gimulations presented in Chapter III and elsewhere.3s13

11C. Sumpary

We have examined various issuves related to Beat Wave Excitation

emphasizing their importance to the PBWA. We reviewed the basic
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Eulerian fluid equations and concluded that the nonlinear frequency
shift 1is negative and due only to relativistic effects, We
examined the early time behavior for the case where the driving
force is time-dependent. It was demonstrated that if "saturation"
occurs after the rise time of the pulse the "saturation” amplitude
does mnot depend on the details of the rise time. On the other
hand, if '"saturation" occurs during the rise time the saturation
amplitude is nearly equal to the instantanecus "Rosenbluth and Liu"
or “Tang et al." values,

We investigated the late time behavior including mismatch by

studying the fixed points é, = 0 and é = 0. It was argued that eg,

the value of e, at the fixed point, is largest when 4 z-[%z FZC)1/3
and v < .35(%1 F2C]1/3. (We assume ego(0) = 0.) For these param—

eters the maximum ef = [%E)ile_ On the other hand, for ¥y >
2
.35(21 FZC)“’3 the maximum eg = E and it occurs for A = - CE?
4 Y &
The importance of the higher harmonics was examined. It was

concluded that for pump strengths of interest (F ¢ .0025) the
inclusion of the third harmonics gives waveforms that exhibit the
level of wave steepening observed in simulations. We also argued
from a simple-minded picture that the phase velocity of the plasma
wave remains roughly constant. A nonlinear shift in k arises along
with the nonlinear shift in « in such a way that vy is reagonably
congtant.

Next the issue of plasma inhomogeneities was addressed. We
first examined how a single coherent ion wave n = nya{i1 + € sin KjX)

W,

couples energy from the primary wave [Eg = Vg = c) into other slow



[E)
vaves {g—¢ g, ¢ ¢). We found that this mechanism can lead to
o i

gaturation levels of the primary wave below the relativistic
saturation one if £ » .5(F2C)1/3, More details including thermal
and kinetic effects are given by Darrow et al.40,4%f We discussed
BWE in long wavelength density gradients. It was shown that if
the electrons Lagrangian fluid excursion in the wave is small
compared to the density scalelength, then the problem can be
treated locally.

Last, the two—dimensional structure of the plasma wave was des-
cribed. In particular, the modification to the structure of the
focusing and defocusing fields from relativistic detuning was

presented.
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CHAPTER III. SIMULATIONS OF BEAT WAVE EXCITATION

ITIA. Introduction

In Chapter II the theory of Beat Wave Excitation was given. In
this section we present simulation results that confirm and illu-
minate much of the theory. Although some numerical results will be
presented, the bulk of this part will consist of results from
particle-in-cell (PIC) kinetic5? simulations. The kinetic simula-
tions utilized the code WAVE, which is two-dimensional (Z-gpace and
3~velocity components) and relativistic. Some of the details of
WAVE can be found in Refs. 53 and 54. A partial 1list of the
parameters used in the simulations ig shown in Tables I and 11.

The previous simulation studiesTs35:36 on the PBWA (prior to
Refs. 5 and 15) were all one-dimensicnal (1-D), The 1~D simula-
tions can be categorized intce those in which the 1lasers are
initialized over the entire system {(Type I) or those where the
lasers are launched into the system. The simulations in which the
lasers are launched (Type II) can be further categorized into
those where the lasers' rise time was or was not relevant. Type I
simulations suffer from several limitations; therefore, they will

not be discussed. These limitations are:

1. Kp ig fixed - In Type 1 simulations initial wvalue prob-
lems are studied, i.e., time evolution problems. The pumps are
initialized over the entire simulation box and then are allowed to

evolve in time. The wavelength of the plasma wave, Zﬂ/Kp, is

59




therefore forced to equal the wavelength of the ponderomotive force
Zn/Ac. Consequently, the phase wvelocity of the plasma wave both
decreases in time, as discussed previcusly in Sec. 1iB4, and 1is
artificial since the wavelength needs to be an integer number of
simulation box lengths.

2. Pulse propagation effects are absent - In the PBWA it is
crucial that one understands how the laser pulse evolves as it
moves through the plasma. In Type I simulations this cannot be
studied. The 1laser pulse changes as é result of the pump deple-
tion-cascading phenomena. Periodic simulations can be useful for
verifying the wvalidity of approximations made in analytical treat-
ments. However, in this case we opt for the use of aperiodic sim-

ulations where more effects can be studied at once.

The Type 11 simulation studies of BWE can be primarily found
in Refs. 35 and 36. The latter36 (also the first historically)
used infinite mass ions and lasers with fast rise times. Their
results are in excellent agreement with single particle theoryuand
the envelope eguation for the plasma wave. We note here, for the
reader's benefit, that Sullivan and Godfrey3% state that in their
gimulations the plasma wave does not saturate at the value given by
Rosenbluth and Liu.® However, the formula given in Ref. 8 and
guoted in Ref, 32 is in error because of an algebraic mistake. The
gimulations of Sullivan and Godfrey give results that agree with
predictions from the correct formula.

The former33 included simulations in which wobile idons and

&0




lasers with longer rise times were uged, Again, where comparison
was permissible, agreement with single particle theory and the
theory of relativistic saturation was observed. Additionally, it
was shown that the predictions of the rise time theory given in
Sec, IIB3 are borne out in the simulations. In what follows, for
completeness, we review some of the 1-D simulations similar to
those presented in Ref. 35 and also present other 1-D simulations
that have frequency mismatches and/or density gradients and/or
mobile ions.

In this section all variables are plotted in dimension units.
For reference, these units are C/mp for position, mBi for time,

mcmp/e for fields, and ny for density.

TIIB. Results

IIIBR1. Short Rise Time 1t £ tg

We begin with a simulation in which the lasers' rise time is

negligible compared to the plasma wave's growth time. This is

simulation Il in Table I. The relevant parameters for beat wave
v v .

excitation are _%gl = gsz = .03 and wy = wp, The lasers’ rige time

is 25 wsi and the growth time is =1.2x(4/F2(C)1/3 = 300 wp~1; so the

rise time is a negligible fraction of the growth time. The time
v

dependence for the lasers M%ﬁ in the simulations is given for

reference and it is

Vos _ Egg(sts _18t4 | 10t3]

V,
% - o) =& hw (142)
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wvhere 1t is the lasers' ''rise time."” Note that h(t) satisfies the

T) i and 8%(1) = 0. In Fig. 3a ve

properties that h{(t}) = 1, h(g = o
present a plot of the the longitudinal electric field, E, for the
chosen coordinate convention, vs. position, x, at wpt = 320. Since
the laser packet, i.e., the driving force, propagates at the group
velocity of light in a plasma, the envelope of all fields will

predominantly be functions of the expression x - vgt 2 x - ¢t., The

dependence of a field on positions at a fixed time 1s consequently
straightforwardly related to the dependence of a field on time at
a fixed position. As a result, from plots such as that given in
Fig. 3a the growth rate for beat wave excitation may be inferred
directly. The growth rate inferred from Fig. 3a is 2.0Z x 1074,
and this is close to the theoretical value of (.03)%/4 = 2.25 x
1074,

In Fig. 3b, E, vs. x is plotted at a later time, mpt = 8¢, In
this figure the field is observed to saturate near the left-hand
side of the simulation box. The peak amplitude of Ey, in Fig. 3b is

seen to be z.lT(mcwp/e), and this is very close to the theoretical

value of
1/3
[%ﬁ(.03)2] = ,168,
The theoretical wvalue quoted refers to saturation from the rela-
tivistic nonlinear frequency shift, se we conclude that in the

simulation relativistic effects dominate the saturation. That is,

convection and collisions do not play much of a role. Furthermore,
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TABLE I - 1-D

Name @&q=Gg wi’z T [%E%)i/z gé Ly %%]/N %i
11 .03 10.9 50 4 ) 410 ® 0
12 A 5,4 120 A ® 120 ® 0
I3 1 5.2,4 120 A © 25 ® 0
I4 A 5,4 120 A ® 25 ® 0
1S 1 4.98,4 120 1 ® 100 ® 0
16 .1 4.98,4 120 1 © 25 ® 0
I7 1 5.4,5 120 A ® 120 ® 0
I8 14 5,4 300 A @ 100 ® 0
I9 A 5,4 300 A ® 100 ® 0
110 .56 5,4 300 . ® 100 ® 0
I 11 .56 5,4 300 A 1836 60 @ 0
I12 .03 10,9 1000 1 1836 410 ® .3
113 .03 5,4 50 .06 100 120 600 .2
I14 .03 5,4 50 .06 ® 120 600 .2
I15 .1 5,4 300 .03 ® 100 ® 0
I16 .1 5,4 300 .03 1836 100 ® 0
I17 .1 5,4 300 .03 400 100 ® 0
I 18 .0S 5,4 150 .03 1836 100 © 0
I19 .1 5,4 300 .03 1836 100 ® 0
120 .03 5,4 50 .06 100 120 ® .2
I 21 .03 5,4 50 .06 100 120 © .05
122 .03 5,4 50 .06 1836 120 ® 0
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TABLE II - 2-D

[MJ i/z Ti Mi

Name a Ly miyz neZ f; N Ly

II1 .1 ® 3,3 240 .08 1 © 106 20
IT 2 .1 © 3,3 240 .06 1 1836 100 20
I1 3 .4 ® 4,4 120 .1 1 ® 120 20
IT 4 .4 © 5.4 120 .1 1 w 120 20
IT 5 A ® 3.8,3.8 1000 .1 1 © 200 10
IT 6 1 © 4.29,3.29 1000 .1 1 ® 200 10
IT 17 .56 20 5,4 300 .1 1 ® 60 60
IT1 8 .56 20 5,4 300 .1 1 1836 60 60
11 9 .56 20 5,4 300 .1 1 1836 120 30
IT 10 .56 30 5,4 300 .1 1 ® 60 60
IT 11 .56 40 5,4 300 .1 1 1836 60 60
I1 12 .56 40 5,4 800 .1 1 1836 60 &0
IT 13 .28 40 5,5 800 .1 1 1836 60 60
IT 14 .56 40 5,5 800 .1 1 1836 60 60
II 18 .56 40 5,5 150 .03 1 1836 60 60
IT 16 .56 40 5,4 150 .03 1 1836 60 60
IT 17 .14 40 8,4 300 .1 1 1836 60 60
11 18 .14 40 5,4 pulse .1 1 1836 60 60

65




a0t

600 1.8 P L] 3.07 4,08
X el

-
-

-~
ad

&

(c)

ELEC DEN

L X T
X ael

The longitudinal electric field Ey vs. position x for
aq = &z = ,03 at (a) wyt = 320 and (b) w,t = 960.

{c} The electron density N vs. x at wpt = 960.

Figure 3.
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by inferring the time dependence of E, from the spatial dependence
given in Fig. 3b, we estimate the time at which saturation occurred
to be =850 wﬁl. To obtain a reasonable estimate of the saturation
time, we subtract half the lasers’ rise time from the time of

saturation, and this is 840 wpi. This compares favorably to the
analytical estimate of 918 mBi obtained earlier. The envelope
equations when integrated yield a saturation value of .163 at
wptg = 940. The saturation time measured from the simulation is
gmaller than the thecoretical and numerical values. We believe a
plausible explanation for this discrepancy is as follows. The
derivation for the saturation time given in Ref. 9 neglects, among
other things, cascading. If cascading does occur, then the first
lower (higher) frequency cascaded light wave together with the high
(low) frequency pump could, as shown in Appendix B, contribute an
additional driving force for the plasma wave. This, in addition to
the conventional cascaded modes, may cause é to increase faster
{convection seems negligible).

We also plot the Fourier 2 spectrum for the longitudinal elec~
tric field energy g% at wpt = 960 and this is shown in Fig. 4. At
this point in time the field is reasonably uniform in sgpace. We
can, therefore, draw conclusions from Fig. 4 about the ratio of the
various harmonics of the plasma wave. The ratic between the second
and first harmonics inferred from Fig. 4 is 8 x 1072, Recall from
Sec. IIBS that the theoretical ratio is ej/ey = (1/2)e,, which for

thig case is 28.4 x 1072 (the E fields are normalized to mcmp/e), 80

there ig once again excellent agreement between the simulations and
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the analytic work. The theoretical ratio of the second and first
harmonics for the electron density is nj/n, = e, {(densities are
normalized to the background density ng), which implies that har-
monics are more prevalent in the density than in the electric
field. Although not shown, the ratio of nj;/n, in the simulation is
indeed e,. As discussed in Sec., IIBS, this and the fact that the
first and second harmonics are in phase means that the nonlinear-—
ity of a wave is more noticeable visually in a real space density
plot than a real space electric field plot. We present in Fig. 3¢
a plot of the density vs. x for future reference. The wave looks
sinusoidal since the wave amplitude is small. In a moment, on the
other hand, we will present results from a run where the electric
field appears sinusoidal while the density is clearly not (for real
space plots).
We next present results from simulation IZ in Table I, in which

2KTe 1/2

v v W
._Qg.l; 0s2 .__1..1...2.. = 5, 4, and (' ] = ae = ,1.

= = _1’
c C u}p

me2
The lasers' rise time is 120 wgi while the growth time is

4 y1/3 _
> 1.2{57) 7 = 180 w71

The greater—than inequality used in the previous sentence is used

because the quoted formula was derived assuming there was no rise

time. Whereas in the simulation discussed previously the rise

time was negligible when compared to the beat wave growth time, in
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Figure 4. The Foyrier spectrum of the longitudinal field energy
Eg/8n(k) at wpt = 960. « is in units of mode number,
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this simulation the lasers' rise time is a considerable fraction of
the growth time. We.will show, nevertheless, that for this case
the peak amplitude is basically only a function of the F at the
time of saturation, as argued in Sec., IIB3.

We first integrate Egs. (538) and (60) for the simulation param—
eters. The time evolution for the plasma wave amplitude e, is
shown in Fig. Sa. The peak amplitude is .424. Since wy = Gp and
not wpg = [wg + g K2a§]1/2, then Ay = - % az = -.0075. Using Egq.
(30), which ig derived assuming a constant F, we find an e, = .423.
Clearly, the existence of a rise time has had a negligible effect
on ep as argued in Sec. IIB3. The saturation time in Fig. Sa is
seen to be =270m51. As expected, this is slightly larger than tg
found from .423 = ["Sdt f(t).

We now compare the PIC simulation results te the analytical and
numerical results. The longitudinal field E, is plotted vs. x in
Fig. 5b at wpt = 240, Although plotted vs. x, as before, we dis-
cuss the figure as though the axis is time, The lasers are at
their peak amplitude over the entire plot since the lasers’ rise
time is 120wp? and Ly = 120%5. It then follows that, since at wpt
= 4120 the ponderomotive force and the plasma wave are still in

phase (sin ¢ 2= 1}, linear growth should be observed from the right-
.30

hand side of the plot. The measured growth rate is = 120 = L0025,
&4 G

which is precisely the analytical wvalue —%—gt Furthermore, the

envelope equations predict that é, = F sin ¢; so as the mismatch

(¢) gets larger the growth rate should decrease as observed in Fig.

Sa. However, in Fig. S5Sb it is clear that near the center of the
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simusltion box, or wpt = 180, the observed growth rate actually
begins to increase.

There are several possible causes for the increase of the
grovth rate. The first, and in this case we believe the most
important, is the modification of the driving force from cascading
inciuding the Aw = Zmp instability alluded to earlier (Appendix Bj.
At the left-hand boundary (the boundary where the lasers enter) no
pump depletion and no cascading occur s¢ the beat wave growth
occurs according teo the input F. As the light propagates into the
plasma, it cascades into upper and lower sidebands, thereby modify-
ing the driving force at a fixed posgition. The growth rate in-
ferred from the spatial plot will therefore not follow the growth
rate of E, at the left-hand boundary. From Fig. 5b we speculate
that cascading, including the Aw = pr terms, can at times in-
creage the driving force.

The second possibility results from the harmonics of the plasma
wave. The amplitude derived in Sec. IIBS5 when harmonics are

included is

E =~ eoft + %% ef).

It then follows that

12




(1 + g% ea), which for the parameters of the simulation is =1.1.

The 10 percent increase is small compared to the observed increase
of =100 percent in this simulation.

The numerical work is also neot in agreement with the PIC
results for the saturation time. The simulations give mpts = 210,
which is much less than the mpts = Z70 obtained from the numerical
result. This discrepancy is aqualitatively consistent with an
effective increase in the driving force resulting from cascading,
including the Aw = Zmp terms.

On the other hand, the peak wvalues for the electric field
obtained from the envelope equations and the PIC simulation are in
agreement. For the ey obtained from the envelope equations the
predicted value of E, is =em[1 + %% e%) = .46. From the simulation
the peak Ey seen in Fig. Sb is .44, which is in excellent agreement
with the numerical results.

In Fig. Sc we plot the electron density vs. x to demeonstrate the
importance of the second harmonics to the electron density. The
second harmonics produce an asymmetry in the density with respect
to the background density. This is to be compared with Fig. 3¢
where the density still appears sinuscidal. Note that the minimum

value of N is larger than -n,/2 as predicted in Sec. TIBS.

ITIBZ. Long Rise Time T 3 tg

In this section we present results obtained from simulations
with parameters that result in saturation during the risgse time of

the lasers. As it tuwns out, this is the more relevant case for

13




current experimental situations.

We begin with simulation IB from Table I in which

Vos2 _ Vos2 wy,2 2kTg 1/2
—c = "¢ = .4, —5;‘ = 5, 4(M0 = 1), (EEE_] =.1, and the
lagsers' rise time is «t = 120 mgi. Once again for comwparison to

the PIC results we integrate Egs. (59) and (60) and the resulting
plot for e, vs. t is given in Fig. 6a. The first peak occurs at
mpt = 91 with a value of e, = .768. The analytical expressions
(78a) and (78b) predict an e, = .723 at tg = 92wpl. This is in
remarkable agreement considering that expressions (783). and (78b)
vere derived with A = 0 and an approximate form for F(t). If Eq.
(78) is solved directly, then as expected even better agreement
between the analytical and numerical work is obtained.

The corresponding E, vs. x plot at apt = 120 from the PIC
simulation is presented in Fig. 6b. = Since Ey not e, is being
plotted, the peak value for E; in Fig. 6b as predicted from the
numerical and analytical work should be E, = .923. However, the
peak value attained in Fig. 6b is =.75, substantially below Lthe
theoretical valuwe. This is probably due to the fact that for such
large values of F and e, the expansion in v2Z/c? in Part I breaks
down. The inclusion of the higher-order terms would lead to
smaller driving forces. In addition, wave particle interactions
(beam loading!}! and pump depletion also lower the value of ey.

We also plot the electron density N vs. x at the same time in

Fig. 6c. Once again we emphasize the asymmetry in the density
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about n, = 1. If we sum the first four harmonics of N for n, = e,

= _T3 we obtain
N=1+%e,+ ef + 2t eg = 2.42 (143)
o 64 s

This is below the wvalue of 2.7 found from the simulations. The
difference points out the necessity of using Nobles asymptotic
treatment2Z2 for large plasma wave amplitudes. The wvalue for N
obtained from expansion (143) is sensitive to the value of ey for
large fields. This makes comparison difficult when the value of e,
cannot be determined accurately.

Rather than discuss the other 1-D simuiations in Table 1 for
which w, = 1 in regards to beat excitation, wé just mention that in
each case the analytical work agreed with the numerical work; while
in the simulations the presence of cascading, pump depletion, and
particle trapping and harmonics did not 1lead to any striking dif-

ferences.

ITIB3. A # O

It was shown in Sec. IBZ that if the frequency difference of
the two lasers w; - wp £ w, # 1, then the peak amplitude ey of the
plasma wave is altered from (4F/Cr1/3, This was first described
by Tang et al.? and it was reviewed in Sec. IB2. When w, - wpg =
A ¢ 0 (but not toc negative) the peak amplitude can be larger than
(4F/C)1/3 gince, as discussed in detail in Appendix A, the non-

linear frequency shift is negative. The converse 1s alsoc true,
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%E]i/s.

results were already presented for [Al << [Afl]

that if A > 0 then ey < [ In the previous section simulation

H

(alFZC)i/a. {(Thosge

2

A's are due to the Bohm Gross correction.) We next present results

from simulations that further support the conclusions of Tang et al.
To isolate the mismatch effects, we let the laser rige time <

be smaller than the saturated time tg. In Fig. 7b we plot Ey vs. x

at wpt = 240 from simulation I3 in Table I. The relevant param—

eters are

v v 2kTa 1/ 2 y

= = (—3) " = .1, w,2 = 5.02,4, and T = 120.
Note that except for wq the parameters are identical to those of
simulation IZ. We infer from the same plot at other times that
the electric field in Fig. 7b has already attained its peak ampli-
tude. The maximum value for E, in Fig. 7b is =.24. We ignore the

large anomolous peak at the right-hand boundary since it is probab-

ly the result of the boundary condition. At this value of E., the

importance of the harmonics is negligible. If in formula (30) we
use A = w, - wgg * F = .015, then we find e, = .25. Furthermore,
if Egs. (59) and (60) are integrated we find ep = .238B as sghown in

Fig. Ta. The saturation time in Fig. 7Ta is =slightly less than
240 mgi and this agrees with the particle simulation. Clearly, all
three methods are in excellent agreement.

We next present results from simulation IS in Table I where the
parameters are identical to those of sgimulation IZ except wq =

4.,98. In this simulation there is now a negative frequency mis-
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match. The value of A, = =.0275 (the Bohm Grosg shift is -.0075);
and the wvalue for A at saturation, 1f it occurs after the rise
time, will be A = A; + F = -.025. This case is interesting because
if we integrate Egs. (59) and (60) with A, = .0275 we find ep =
.28. This is shown in Fig. 8a. This indicates that the mismatch
is too negative. The simulations contradict this, ag shown in
Fig. Bc where we plot E, vs. x at wpt = 320. The amplitude at
this time 1s =.55., We note that the electric field is flatter for
the negative peaks. This 1is due to the trapped electrons extract-
ing energy from the plasma wave {(beam loading). Witk this addi-
tional complication, it is difficult to determine the actual wvalue
for the peak electric field. Furthermore, the wave is still grow-
ing at this time and later in time it becomes even more difficult
to determine a definitive value for ey. Clearly though, the wave
evolution is consistent with a negative nonlinear frequency shift.
The amplitude is initially smaller and is eventually larger than
for the zero mismatch case.

We plot in Fig. 8b the evolution of e, obtained by integrating
Egs. (59) and (60) for A, = -.025. We plot e, for this value of A,
gince it yields good agreement. The peak value is ey = .58 and it
corresponds to uﬁt = 390. The rise time is evidently important
since it alters the optimum value of A,, albeit slightly. Although
the simulation and the numerical work do not agree guantitatively,
they do agree qualitatively in that the E; is larger for a negative
mismatch (but not too negativel.

We have also carried out simulations with a larger positive fre-
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guency mismatch A = .Swp. This iz simulation I7 in Table I. The
results are not presented here since agreement with the tuning

curve of Tang et al. is essentially observed.

I1TIB4. Density Gradient

In Section IIB7T we investigated the effects of plasma inhomo-
geneity analytically. In this section we present results from com-
plementary simulations. We begin with a simulation of a plasma
with a long scalelength density gradient. The parameters for simu-~

lation I12 in Table I are

v v 2kTay1/2

—osl . 2052 . 03, wy,g = 5,4, (-=3%) " "= .0628, T = 50, and
dn, y- c .

(a;/n) 1 = 600 wg at the point where w, = wp.

The density rises from .036 to .044 of the c¢ritical density of the
high-frequency laser in a distance 120 %3.

We plot the electron density K vs. x at wpt = 468 in Fig. 9a
and the associated electric field E; vs. x at mpt = 468 in Fig. 9b

to show that, as expected qualitatively, the plasma wave is local-

ized around the resonant region. The density is plotted in units
m%(x)
of oz In this simulation the resonant region, i.e., where
(i}
mp(x) = Wpe ® Wy, 1is near the center of the simulation box. For

reference the position where A = 0 is x = 56.6 %E and the positien

27 173 c ) .
where A = —[5— cm) is ®x = 66 wg The resgonant point A = 0 is
marked in Fig. 9.

In Sec. IIB7 it was shown that if E <<{ Lg = [(dN/dx)/N1"1 then
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the excitation could be treated locally. For this simulation Lg is

w,
?20 = 600 %E' Since § is bounded by %5 (for g EQ > 1 wavebreaking
occurs), then E < g%a << 1. The excitation process should, there-
$

fore, occur locally enabling some quantitative comparisons with
the tuning curves of Tang et al. The convection terms arising
because of the finite temperature will become important when the
plasma wave evolves in time intoe a more localized structure in
space. It alse follows that a determination of the sign of the
nonlinear frequency shift can be made by observing on which side
{(in x) of the resonant point wp(x> = W, the plasma wave amplitude
is eventually largest.

The plasma wave amplitude is asymmetric with respect to x = &0
%3 at wgt = 468 as shown in Fig. 9b. At this early time relati-

vistic detuning is ineffectual. The change in sin ¢ from 1

il
2)

match. Since the initial mismateh 1s an odd function with respect

(¢ from is consequehtly determined solely by the initial mis-
to the resonant point and sin ¢ is an even function about ¢ = %,
the plasma wave amplitude is symmetric about the resonant point.
At 1later times, however, relativistic detuning leads to an asym—
metrical dependence of sin ¢(x) about x = 60 gg . This is shown in
Fig. 9¢ where the absolute wvalue of the longitudinal electric field
is plotted for wyt = 720. At this time the peak value for ky is
=_ 16 and it exists at a position to the right of x = 60%8. Hence,
the plasma wave 1is getting out of phase with the pump fastesgt at
positions where Wy < wy (A > 0). We conclude, therefore, that the

nonlinear freguency shift is negative for the reasonsg given earlier.
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As the plasma wave continues to evolve in time it becomes more
localized in space. Eventually a time occurs when at a given posi-
tion the electric field reaches its maximum value and then begins
to decrease. These positions of instantaneous saturation gradually
move toward the Tang et al. resonant point both from the high den-
sity and low density side while the center of the packet continues
to grow. This scenario results in the evolution to the narrow
localized structure.

This is depicted in Figs. 9b, 9¢, and 9d where the absolute
value of E, is plotted vs. x at three times: wgt = 468, wyt = 720,

and w,t = 960. The maximum E; at wyt = 960 is =.1875. The ampli-

tude above the Rosenbluth and Liu value of (gﬁ)i/a, and the time
, . 4 y1/3
wot = 960 is less than the saturation time wptg = 1.2 (FZC] for

a rise time of S50wp! and a delay time of 60wy'. This means that ¢

has been nearly g for the entire run at this position. It is not

possible to make further quantitative comparisons because convec-—

tion losses are now becoming important. The convection term is
v o, 3 ag Zo where AL is a typical scalelength for e,. At
8 ax 2 "¢ AL 5 °
e
mpt = 960, <e,> = .1, and AL = S %;, S0 Vg 5;9 = 1.26 x 1074 while

F sin ¢ 2~ 2.25 x 1074, Consequently, convection termg are on the
same order as the driving force. S0, as the wave increases the
approximation of treating the problem locally breaks down not
because of a nonlinear effect but because of linear convection.

Last, we note that the qualitative shape of the tuning curve
of Tang et al.? is evident in the plots of Figs. Sb through 94. The

wvave's envelope falls off more sharply on the high density side
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than on the lov density side. The high density side corresponds to

negative mismatches.

ITIB5. Density Ripple

it was shown in Sec. IIBT that in the presence of a coherent
density ripple the maximum amplitude of the plasma wave can be
reduced below the Rosenbluth and Liu value. The plasma was assumed
to have zero temperature. We have presented theory and numerical
work elsewhere40:41 to describe the modifications to the cold
theory when a finite temperature fluid plasma is considered. In
this section we describe a particle simulation that illustrates
how kinetic effects alter the conclusions of the cold and warm
fluid theories. Several simulations were made and the complete

description can be found in Ref. 4l.

We report on simulation IZ4 in Table 1. The relevant param-
t Yos | g5, L2 . d N = fil1 + .1 sin(1.2 kx)1
eters are -z = .05, wp T 5,4, an = Dy -1 sin(l.2 kx
where k is the wave number of the density ripple. The electrons
are initialized with no thermal motion. The wavenumber of the

ripple was chosen so that it would not be the same as any Raman
Scattered modes. The laser rise time is short and the plasma heats

up quickly before the grid instability can grow. An upper bound

for this numerical instability is “.015mp.52 The results are
E

depicted in Fig. 10 where a sequence of E, vs. X, é% vs. ky, and

f{py) are presented. As the plasma wave is excited, there is

evidence of the first two coupled modes (k, * K, Ky % 2k). This is
E2

= -
seen in both the E, vs. x and o vs. ky plots st mpt = 60. The
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electric field looks hashy toward the left-hand boundary at both
timeg. At mpt = 90, the plasma wave looks smooth toward the left
while it is still hashy in the center of the simulation box. This
is accompanied by electron heating as illustrated in the f(py) plot
at the same time, The heating is mostly on the left and is the
result of wavebreaking of the highest k modes and damping from
wave~particle interactions of the intermediste x modes. As time

progresses further, the hashy part propagates to the right leaving

behind a hot plasma asg evidenced by the continued expansion in

E2
f(py). This is seen in Fig. 10c where Ey(x), o (k), and f(py)
are presented at mpt = 120. Eventually the entire plasma is
heated and the mode coupling ceases. The quenching of the mode

coupling can be described with the inclusion of the finite tempera-
ture terms.?! This ig illustrated in Fig. 10d and i0e where the
same plots are shown at wpt = 150 and 180. The plasma wave eventu-
ally resembles that from uniform density simulations after the dis-
appearance of mode coupling. The heating of.the plasma from the
higher k mode-coupled modes appears to be a self-stabilization
method,

More details and discussion of this and other simulations can
be found in Darrow et al.4! The effects of electron transport in
more realistic geometries and ion inertia need more study. Recent-
ly, Dubois et al.5% have examined the role of collapse in BWE;
however, their work is still preliminary. Last, we mention that
mode coupling has been observed in the recent beat wave experi-

ments and details can be found in Refs. 40, 41, and 56.
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IIIB6. Discrete Jons

In the previocusly discussed simulatiens the ions constituted a
smooth fixed background of neutralizing charge. If instead the
ions are particles, then the excitation process can be altered in
two ways.

The first is due to the ions' discreteness, while the second is
due to their dynamics. The latter point will be addressed in
Chapter V where the instabilities arising from ion dynamics are
examined using simulations. We next briefly report on simulation
regults that investigate the former.

The results are qualitative. A more quantitative analysis will
be given at a later date. In the simulations when the ions are
fixed, they constitute a smooth background density. When they are
mobile, they are algo discrete and this gives rise to larger back-
ground density fluctuations, The amplitude of the fluctuations
depends on the number of particles per cell and their temperature.
The effect of ifon fluctuations has been examined analytically by
Dawson and Oberman®3 and by Horton and Tajima.%6 This was briefly
discussed in Sec. IIB7. In this section we describe simulations
with differing ion temperatures and iop mass in which the plasma
wave sometimes does not grow. It appears that sometimes the ion
inertia is not a factor, just the amplitude of the background
noise. If this is the case, then the final expression for the
damping given by Horton and Tajima4® needs to be reevaluated since

they assumed the damping rate was smaller than the ion wave




frequency.

The simulations to be described are 11, I1Z2, 122, and 123 in
Table T, Simulation I1 was presented earlier to illustrate BWE.
The ions were a smooth neutralizing background in this simulation.
In simulation 122 the parameters are sgimilar except the ions are
discrete with g% = 100. In this simulation a plasma wave is never
excited. A plot of the electric field E, vs. x is given in Fig.
1la at wpt = 450, In this simulation ion dynamics are eventually
important since Stimulated Brillouim Scattering (SBS) does occur.
Simulation I23 is identical to the I22 except the mass ratio is
now 1836 and temperature ratio is now 0. In simulation I23 the ion
noise is lower by roughly an order of magnitude. The plasma wave
is excited as expected, and it is plotted in Fig. 11b at the iden-
tical time mpt = 450 for convenient comparison. As before, SBS
occursg and its effects will be discussed later in Chapter V. Last,
in simulation I12 a plasma wave was also never excited. This simu-
lation was previously discussed in Ref. 31. We summarize by re-
marking that, if ion dynamics are neglected, the typical back~
ground noise does not appear to be detrimental when the pump powver
is above some threshold value. For example, in the simulations if
the noise 1level is less than 1072, then for gg > .05 the plasma
wave is still excited. The noise level in the simulations is prob-

ably larger than that expected in future experiments.

IIIB7. Two Dimensions

The previously discussed similations were all cone-dimensional.
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These simulations were in agreement with the reduced envelope
equations of the cold plasma fluid theory. The simulations dem-
onstrated that large-amplitude coherent plasma waves can be ex-
cited in one dimension. In this section we present the first two-
dimensional simulations of beat wave excitation. The results will
be compared to the theory of Sec. IIB8 where transverse derivatives
were neglected. Furthermore, these simulations provide vet another
check of the gign of the nonlinear frequency shift. This is not
Just a pedantic exercise, since vxﬁ need not vanish in 2-D, thereby
allowing a possible amplitude-dependent dc current. The =ign of
the frequency shift is important since for a positive frequency
shift, waves are modulationally stable; while for a negative shift
they are unstable. A two-dimensional®! analysis in slab geometry
similar to that in Appendix A for one dimensions 1indicates the
extra dimension does not lead to any appreciable amplitude-
dependent frequency shift in BWE. We remark th#t some of these
simulations have been briefly discussed elsewhere®:15; however, in
this discussion more details will be given.

A complete list of the two—dimensional simulations is given in
Table II. In the first simulations the laser beams had an infinite
cross-sgsection, i.e., they were plane waves; while in the rest the
laser beams had finite cross-sections with cosZ Ef profileg for the
electric field. When the laser beams' cross-—sections are infinite,
i.e., Ly, » », the only difference between these and the 1-D cases
is the occurrences of transverse (2-D) instabilities. This subject

will be discussed in Part B where competing processes are
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addressed., In this section only these simulations with finite
I, are pregented.

In Fig. 12 we plot the longitudinal electric field E, vs. x for
the center of the beam, y = 30 %5, at wpt = 150 from simulations
with different L,'s. The L's are 20, 30, 40, and « c/wp, respec-
tively. The gimulations were 117, 118, 1110, II11, and I10. In
all five cases ¥ = 300 and v,/c = .56. In II7, II10, and I10 the
ions were immobile while in the other two they were mobile. In
addition, in 1110 the lasers were polarized in the 2Z~D simulation
plane. However, at this early time and these high intensities the
ions do not play a significant role as will be argued later in
Chapter IV. There are only slight differences between the five.
plots and these differences seem to be related to the plane of
polarization. We conclude, therefore, that the longitudinal elec-
tric field along the axis of the laser beam is insensitive to Lg,
the laser beams width, for early times. *

The precise forms for Ey, Ey, and n depend on the lasers' pro-
file. In the linear approximation these filelds are straight-
forwardly obtained from the ponderomotive potential, and this wvas
done in the paper by Fedele et al.%% in cylindrical coordinates.
For comparison to the simulation results we give the linear theory
in slab geometry for the transverse profile used in the sgimula-

tions. In dimensionless units the linear fields are

G @

Z cos% k,y sin (x - t) (144a)
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G192

Ey = -t cos® K,y cos (x - &) (144h)
Ey = t aqap k, cos? k.y sin ki§ gin (% - t) (144c)
n = -t G409 cos? K,y sin (x - t)(% cos? k,y + k¥ cos? k,y
- 3k? sin? k,y) (144d)
where k, = g; . The ratio for maximum Ey to the maximum Ey is
mo_ g8y oy dn (145)
Eym 4+ 4 Lo
where Eyp occurs for k.y = 0 and Eyy occurs for k,y = 2. It is

also worth noting that the excited plasma wave is actually confined
to a smaller region than the lasers. This is shown in Fig. 13a and
13b where the lasers and the longitudinal field transverse profiles
are plotted from simulation II11 at wpt = 150. HMost of the plasma
wave energy is confined more closely to the axis than a width of
Lo = 20 would indicate. This is seen frem above, since
Ey & cos% k,y while E, & cos? k,y. This point is valid for other
geometries since for the linear fields E, a EZ in general.

The contour plots of the scalar potential ¢ and the associated
electrostatic fields E, and Ey are presented in order to understand
the transverse field structure. We mention that the fields created
from beat wave excitation are not electrostatic when the evolution

of E, is coupled to that of E,, i.e., transverse derivatives are

Y
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Figure 13.
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included.3! In Fig. 14 we present contour plots of ¢, E,, and Ey
at wpt = 150 from simulation II8. This simulation ig chosen since
it has the smallest L, providing the largest EY and the best test
for uging the 1-D equation with v as a parameter. We observe that
¢ is smoother and this is because E being equal to -V$ = ~x¢ nat-
urally gives more importance to the to the higher k modes.

From Fig. 14 it is evident that for wpt = 150 the wavefronts
are coherent and as planar as possible for the narrow spot size
used. The ratio of Eym/Exm = .25, which is close to .2, the value
obtained from Eq. (145) for L, = 20 %5. We also point out that E
and E, are g out of phage as predicted from Eqs. (144b) and (144c).
In other words, the E, and Ey fields are consistent with those that
result from only a scalar potential ¢. We infer that the wave is
predominantly electrostatic. The Ey< field is what gives rise to
what are referred to as focusing and defocusing forces on the
accelerated particles.

As expected, in the simulations with larger L,'s the ratio

Eym/Exm decreases. When L, = g%g, the ratio Eym/Exm = _16. This

is larger than half the value for L, = %%g_ However, the EY field

for this case 1s very incoherent and it is just sabove the noise

level. For this reason, the wvalue of EYm may not necessarily be
repregentative of the wave, In the simulations with L, = ggg the

laser was polarized in the y direction making it impossible to
determine the EY associated with the plasma wave.
The results presented until now were for times when the linear

theory was still wvalid. As time progresses the nonlinear frequency
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shift manifests itself. This is most easily seen from the evolu-
tion in time of the contour plet of ¢. In Fig. 15 we plot the con-
tours of ¢ at mpt = 150, 180, and 210 from simulation IIB. The plot
at mpt = 150 was also shown in Fig. 14 and is presented here for
a comparison with the other two plots. Unlike the case at mpt

= 150, the potential at wpt = 180 no longer has planar wavefronts
on the left-hand side of the simulation box., The wavefronts appear
to be breaking up. As in the 1-D case the variables x and t can be

used interchangeably to the extent that quantities are functions

only of t - §E' The transverse splitting of the wavefronts can
then be explained as follows. It was shown earlier in Sec. IIB2Z

that in 1-D the saturation time scales inversely with F to some
power. The scaling being tg & F~2/3% yith no rise time and

tg @ F52/7 with a quadratic rise time for F. Consequently, the
plasma wave will saturate at an earlier time for larger F. If F
is a function of y and the equation for the evolution of E, is
absent of any transverse derivatives, then y can be treated as a
parameter, then E, will saturate first for the values of y where F

is largest, We have assumed that F = f(y)g(t - %E}' In the simu-

lation, therefore, where the y dependence of F is cos4 E%X“ for
L L °
lAay] < 52 and 0 for Ayl > 59, Ey should reach its peak amplitude

firgt at Ay = 0. We have defined Ay = y - y,. The field E, will
then begin to decrease at Ay = 0 while for the neighboring Ay's it
will continue to increase. Then for these Ay's it will begin to
decrease while it continues to increase for still larger Ay's and

go on. This behavior will manifest itself as the splitting struc-~
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ture seen in the contour plot of E,. If the transverse deriva-
tives can be neglected, then ¢ and E; basically satisfy the same
equation. Therefore, the contour plot of ¢, which is actually pre-
sented, is similar to that of E,. The splitting structure leads
to both larger and more complicated focusing and defocusing (EY
field for our geometry) forces. This was argued in Sec. IIBB.
The contour plots of E, and Ey are shown in Fig. 16 at mpt = 180
for simulation II8. The ratio of gﬁi is now .44, which is approxi-
mately twice that at wpt = 1580. While E, is similar in magnitude,
Ey is larger since the distance over which ¢ varies in the trans-—
verge y direction is shorter (~1/3 shorter).

Furthermore, at this time when ¢ and E, have a dip on axis, Ey
changes sign two times rather than once across the wavefront.
Therefore, at a position X where an accelerating field exists there
is always some y for which a focusing force also exists. This
structure of Ey is seen as four islands at some x in the contour
plot of Ey shown in Fig. 16b. This is probably not useful for
particle acceleration since each bunch 1in successive wavefronts
would not be aligned in vy, However, we have not ruled out the
possibility that these fields may have some other application. The
importance of the above is that, salthough the transverse deriva-
tives are signficant (Ey = Ey), the conclusions of Sec. 11B8 where
they are neglected are borne out gualitatively in the simulations.

As time progresses still further, ¢ will begin te increase
again on the axis, and this is seen in Fig. 15¢ (wpt = 2103, For

this case, the peak amplitude in this second cycle will actually be
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Figure 16.

60 . T i 1.

E;() : ! =T r

0  X(c/wpe) 60

Contour plots of (a) E, the accelerating field and
{b} E, the focusing and defocusing field at th = 180,
The laser spot size was 20 c/mp and T = 300w, t, The

values of the minimum and maximum contours are given.
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larger than that in the first cycle. This was also seen in the
solution to the envelope equations. The waves' width is also nar-—
rover, so the treatment of y as a parameter ié no longer permissi-
ble.

The wavefronts mnot only split but bend forward so that they
resemble the letter C. This is due to the fact that the nonlinear
frequency shift is negative. If it was positive, the wavefronts
would bend backwards. To argue this we recall that it was shown in
Sec. 1IB8 that if all variables were predominantly functions of t -
%g, then the phase velocity of the plasma wave is relatively con—
gtant irrespective of the gign of the nonlinear frequency shift.
Therefore, if a detector was situated at a fixed position and if
the wavefronts moved at the same velocity, then in order to measure
a negative frequency shift the space between each wavefront would
need to get larger.

In other words, a nonlinear wavelength shift of the opposite
gign and appropriate magnitude arises to keep V¢ relatively con-
stant. The wavefronts evolve into C's because the frequency shift
is largest where the wave amplitude is largest, which is initially
on the laser axis. In addition, as the amplitude on axis begins
to decrease, after it reaches its peak amplitude, the frequency
shift begins to decrease, The wavefront on axis should appear to
come forward and indeed this is observed on the left-hand side of
Fig. 15c.

When the peak ampliltude is first reached, by definition ¢,

the phase difference between the plasma wave and the driving
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force, has shifted by g from its initial value. The outside region
of one wavefront never develops a frequency shift since the ampli-
tude is always small. Along the axis where the nonlinear frequen-—
cy shift is largest initially, the electrostatic field's phase
eventually will lag that on the outside of the beam by %. Conse~
quently, the electric field at a particular x is eventually due to
two wavefronts. (Wavefronts refer to regions of either positive
or negative potential.) When this occurs the negative peak of oné
wavefront will line up in x with the outside of a positive wave-
front. This occurs only at tg when, by definition, ¢ has shifted
by g. Thiz phenomena is observed in Fig. 15b near x = ZOC/mp.

In order to illustrate the dependence of the transverse struc-
ture on L,, the laser spot size, we show in Fig. 17 contour plots
of ¢ at Wpt = 150 for L, = 20, 30, and 40. In Fig. 18 the same
sequence of plots is given at mpt = 180 for vy = 30c/wp. For
Lo = 20 %5, results are presented for both mobile and immobile
ions and when L, = 30 %B the laser isg polarized in the simulation
plane. At wpt = 150, the wavefronts are planar for all three
values of L,. Neither the use of mobile ions nor the change in the
polarization plane seems to make much difference at this time.

This similarity was also reflected in the axial plots presented
earlier in Fig. 12. The contour plots become progressively more
incoherent and asymmetrical with increasing L, at mpt = 180. When
comparing the two L, = 20 %5 plots, it is evident that with mobile

ions ¢ is only slightly affected. These differences are probably

due to the increased noise level that accompanies the use of dis-
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O  X(c/wpel 60 O  X(c/wpe) 60

Figure 17. Contour plots of the scalar potential ¢ at wpyt = 150
for (a) L, = 20 c/wp, Mi/m, = w, (b)Y Ly = 20 c/wp,
Mi/me = 1836, (c) L, = 30 c/uwy, Mj/me = @, and
(d) Lo = 40 c/mp, Mi/me = 1836. The values of the
minimum and maximum contours are given.
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crete ions. At later times mpt = 210, the difference between the
various simulation results are even more pronounced. We believe
this is due to competing processes. More detail and explanation
will be forthcoming in Part B.

The plots of Eyx vs. x along the axis do not exhibit the same
degree of disparity for wpt = 180, In Fig. 19 we plot E, vs. X
along v = 30 %; at wpt = 180 for the five cases im Fig. 12. The
most notable differences are between the immobile and mobile ion
cagses. With immobile ions the field saturates at a larger ampli-
tude and it drops off more rapidly behind the point where the peak
amplitude is obtained. The sharp dropoff is caused by the damping
from the trapped electrons. It may very well be that this peak
would actually be the largest peak in the absence of trapped elec~-
trons. There are more trapped electrons in the immobile ion runs
because the field is larger. The field is larger because the dis-
crete ions {or equivalently the increased noise level}) give rise
to an effective damping or scattering of energy and of the beat
wave, This wag alluded to in Sec. IIBT.

We also integrated the envelope equations for the sgimulation
parameters of F = .08, A, = -.0075, and T = 300@51 and the result
ig presented in Fig. 192, The peak amplitude occurs at mpts = 160
for ep = .7 from which we infer Ep = .B8Z. The amplitude differs
from the simulation results, where mptS ¢ 160 and E, = .73, predom-
inantly because the envelope equations were derived to lowest order

ve

in E% and with particle trapping neglected. For these high inten—

sity cases, more terms must be kept or, following Neble,22 the
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envelope equations of the exact undriven system need to be used.
Nevertheless, the differences are not too great, so even when Ep =
.8 the envelope equations provide useful results. The numerical
result shows that e, will decrease to .2 by wpt = 187.5 so that at
wpt = 180 the value of ey is ~.4. Although the value of e, does
not decrease as much as predicted from the envelope equations after
saturation, there is qualitative agreement. The same plots at u@t
= 210 are in better agreement if the predicted temporal dependence
ig translated to an equivalent spatial dependence.

As time progresses still further, y can no longer be treated as

a parameter. In places, Ey becomes on the order of E,, so the spa-
tial transverse scale becomes comparable to %g. Furthermore, the
plasma wave begins to influence how the laser evolves. This will

be taken up later in Chapter V. At this time except in the narrow
beam cases the plasma wave is no longer useful for particle accel-
eration.

In order to study the role of the laser rise time, simulations
identical to II1i, except for the magnitude T, were done. The rise
time was changed from 300m§1 to either 150m51 or SOOmﬁi. The
results are summarized in Figs. 20 and 21 where contour plots of ¢
are given at mbt = 90 and 150 for IIi6 and mpt = 300 and 420 for
I112.

For the short rise time simulation, the plasma wave is initially
very planar and coherent as shown in Fig. 20a. Soon afterward, as
seen in Fig. 20b, however, the plasma wave becomes very incoherent.

This is partly due to wave-particle interactions. The same quali-
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Figure 20. Contour plots of the scalar potential ¢ at (a) wpt =
90 and (b) t = 150. The laser spot size 1s
Lo = 40 c/uwp and T = 150m§1. The values of the
minimum and maximum contours are given.
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tative features concerning the split structure of the fields is

also observed., This simulaticn also permits another chance to
Eym
Eym
because the fields arise before any competing instabilities and

check the formula for predicted from linear theory. This is

E
We find EXE = .16
“m

at mpt = 90, which is in reasonable agreement with the predicted

the fields are significantly above the noise.

value of .1 for Ly = 40.

For the long rise time simulationg, the plasma wave is reason-~
ably coherent at the earlier time wpt = 300. It is not as coher-
ent as in the shorter rise time simulations for times when the wave
amplitude was comparable. At wpt = 420 the plasma wave 1is very in-
coherent. This is shown in Fig. 21a and 2ib. By this time compet-
ing processes are occurring. In fact, ion dynamics have even
become important and this will be shown later in Chapter V.

The 2-D simulations previously discussed all used the same
laser intensity. To study the effect of laser intensity in 2-D,
simulation II17 was carried out. The parameters were identical to
1111 except that gg = .14 for each beam. The plasma wave evolu-
tion is displayed in Fig. 22 where the contour plot of ¢ isg given
for both mpt = 240 and 300. For comparison, plots of E, vs. x from
the 2-D simulations and an identical }-D run with fixed ions are
presented in Fig. 23. Even as early as wpt = 240, the.plasma wave
ig less coherent in the 2-D case. This is seen in both the axial
and contour plots. The phase fronts are not planar as well. The
differences between the 1-D and 2-D simulations are the result of

both the increased noise level in the 2-D case and the competing

110




Figure 21. Contour plots of the scalar potential ¢ at (a) wpt =
300 and (b wpt = 420. The laser spot size is
Lo 40 c/uwp and T = 800upl. The values of the minimum
and maximum contours are given.
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Figure 23. {a) The solution to the envelope equations e, {t}) for
o = ap = .14, a, = .1, and € = 3000%1. The electric
field E, vs. x down the laser axis a mgt = 300 for
(b) Ly = », Mi/mg = ® and (¢} L, = 40, M;/my = 1836.
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transverse instabilities. The plasma wave does not saturate during
the rise time for this low-intensity case. This is seen in Fig.
23a where the envelope of the plasma wave is plotted. The 1-D sim-
ulation results are in reasonable agreement with the envelope equa-
tions. The 2~D simulation agrees only in a qualitative sense.
Last, we remark that the ratio gxm % .22, which is above the pre-
xn
dicted value. However, the Ey field is not very much above the
background noise level and consequently is not coherent. Exact
agreement is therefore not expected.

In summary, we remark that these first 2-D simulations demon-—
strate that a coherent wave with the necessary properties can be
excited if both the rise time is ghort enough, the laser intensity
is high enough, and the laser spot size is narrow enough. These
requirements are partly tied to the requirements that competing
instabilities be avoided. This will be discussed in Chapter V. In
future experiments the Jlaser profile cannot be expected to be as

gmooth, but the background plasma noise 1is expected to be mnmuch

lover.

ITIC. Summary

We have attempted to determine the wvalidity of the theory in
Sec. IIB through numerical and kinetic simulations. In the pro-
cess, those areas in which future work is necessary are identified.
The envelope equations agree with the simulations in the following
respects: When the pump strength F 1is smaller than =.02, the

saturated amplitude is sccurately described by the fluid equations
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with the cubic nonlinearity. When the rise time effects are rele-
vant, agreement also exists for the saturation amplitude.

The saturation time and, in some cases, the growth rate are not
in as good agreement with the envelope equations. In the simula-
lations, saturation occurg earlier than the fluid equations pre-
dict. The growth rate in some cases increases dramatically during
the initial growth cycle and this causes the earlier saturation.
The increase in the growth rate is believed to be caused by cas-
cading including the Aw = Zmp coupling. The simulations were for

Wy )
relatively small values of a%(zio). The larger the ratio ag the
longer it takes for cascading to occur. However, the acceleration
distance also increases. The issue of 1-D cascading, pump deple-
tion, and efficiency is, therefore, an area that deserves dili-
gent effort. Proper numerical efforts are necessary. The disa-
greements are the result of fluid not kinetic effects.

The ratio of the harmonics for both the electric field and the
density is in agreement with Sec. IIB5. The inclusion of the first
three harmonics gives reasonable waveforms for small field ampli-
tudes. When the pump strength is larger than =.04, more terms
need to be kept or the treatment of Noble2Z needs to be used. For
example, when E, = .75, the peak density given by keeping the first
three harmonics was 2.4 while the observed density was 2.7-3.0.

We observe both qualitative and quantitative agreement with the
tuning curves of Tang et al.® We find that the simulations, there-
fore, are consistent with a negative frequency shift. The agree-

ment was observed in both homogeneous and inhomogeneous plasmas.
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In the homogeneous cases, when A, was positive (A, + F was also
positive) the saturation amplitude was smaller than the A, = 0
case. On the other hand, when A, was negative the eventual
saturated amplitude was larger. However, in the latter cage there
was disagreement between the numerical and the PIC simulation
results as regards to the optimum A,. When the plasma had a linear
dengity gradient, the plasma wave eventually became larger on the
positive density side (negative frequency mismatch). This is con-
gistent with Tang et al.? and a negative nonlinear frequency shift.

Mode coupling of the beat-excited plasma waves to slower phase
velocity plasma wave from a pre-existing density ripple was ob~
. served. The plasma was initiaily cold. The slower phase velocity
modes heat the plasma first from wave breaking and second from
wave-particle interactions. As the plasma heats up, the mode coup-
ling ceases since the coupled modes are no longer normal modes
because of the linear temperature frequency shifts. Thus, the
mode~coupling process appears to be self-stabilized. More details,
including mode—coupling in a warm plasma {(quasi-resonant mode-coup-
ling), c¢an be found in Refs. 40 and 41. Thermal effects are basi-
cally important when k2)3 » €.

Simulations were presented that circumstantially showed that a
large enough noise level can suppress BWE. The results are quali-
tative and a more quantitative description is in progress. The sim-
lations indicate that the damping results from the ion noise due to
discrete ion effects not ioen inertia.

The 2-D simulations indicate that plasma waves with planar
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vavefronts can be excited by BWE. We find that the accelerating
electric field down the lasers' axis is similar toe that in 1-D
gimulations for times up to the initial saturation. This 1-D
behavior is insensitive to the laser spot size. The simulations
demonstrate that using the 1-D envelope equations with y treated as
& parameter provides a reasonable description even for the narrow
laser beams. From the shape of the wavefronts, we can therefore
infer that the nonlinear freguency shift is negative if treating vy
as a parameter is valid. Eventually, this description is not
valid; but by this time the wave is no longer useful for accelera-
tion, The plasma wave was less ccoherent in regard to both the
accelerating and the focusing and defocusing fields for the
largest rise times. This ig because competing processes have time
to develop. The laser intensity needs to be larger when the laser
rise time is made shorter in order to excite the most coherent

plasma wave.
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PART B. COMPETING INSTABILITIES

Chapter IV. Descriptions of Competing Instabilities

IVA. Introduction

In Chapters 11 and 1i1 the subject of Beat Wave Excitation was
examined both analytically and computationally in the absence of
any competing instabilities. The instabilities of both light waves
and the excited plasma wave are important bhecause they can scatter
energy out of the laser beam and they can lead to the break up of
both laser beams and the plasma wave. The instabilities are the
result of both three wave decay {(resonant}) and four wave modula-
tional (nonresonant instabilities).

Instabilities that scatter light are the Stimulated Brillouin
Scatter10,11,57 (SBRS) and Stimulated Raman Scatteri?.:11,13 (GQRG)
instabilities. These instabilities are resonant parametric three
wave instabilities. That is, all three waves are normal modes that
satisfy their respective dispersion relations.

In SBS a light wave decays into a backward traveling light
wave and a forward propagating ion acoustic wave. In SRS a light
wave decays into another 1light wave and a plasma wave, These
instabilities have received enormous attenticn during the previous
15 years owing to their profound importance to laser fusion. SBS
reflects light while SRS reflects light and generates '"energetic”
electrons. In laser fusion the energetic electrons are deleterious

since they preheat the D-T fuel preventing the compression neces-
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sary for fusion.38 In this case the term energetic refers to the
10-1000 KeV range, which is not of interest for particle accelera-
tors. We will refer to the voluminous7:10,11,13,57 amount of pre-
vious work on these instabilities to argue when these instabili-
ties will be important and how they may be avoided. We point out
that most of the previous work treats the instabilities separately
and only recently has there been a concerted5® effort to examine
the competition between them.

The idinstabilities that lead to the breakup of the light are
four-wave nonresonant modulaticonal instabilities. These are rels-
tivistic#8 and ponderomotive filamentation3? of light. Raman
Forward Scatter7:13 can also be considered in this category. Those
instabilities that lead to the breakup of plasma waves are both
resonant and nonresonant instabilities. The nonresonant instabili-
tiez are self-modulation and filamentation from both relativis-—
tic47 and ponderomotive®© nonlinearities. The resonant instability
is parametric decay. Furthermore, the evolution of the light wave
affects the evolution of the plasma wave and vice versa,

In Sec. IVB for completeness we rederive the growth rate and
range of wunstable k's for the relativistic selif-modulation and
filamentation of both light and plasma waves following the work of
Max et al.%8 This is done bhecause these processes are not as well-
known as their ponderomotive counterparts. Additional theoreti-
cal®1:62 york on relativistic self-focusing has recently appeared
in the literature. We prefer instead to use the work of Max et

al.,48 gince it is a stability analysis and it is done in slab
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geometry. The power thresholds given in Refs. 61 and 62 can be ob-
tained from the threshold criteria for stability. The stability
analysis is easily generalized to plasma waves. Therefore, for
our purposes Max et al.%8 jig adequate. However, to treat whole-
beam self-focusing in c¢ylindrical coordinates a procedure along
the lines of Sprangle and Tang®! is required. Furthermore, we dis-
cuss how the instabilities of the plasma wave and the light waves
are coupled. This phenomenon was coined resonant self-focusing
when it was first observed for ponderomotive process.®3 We also
quote the growth rates for the ponderomotive processes since they
are more commenly found in the literature.

In Chapter V the usefulness of growth rates and unstable k's of
the competing instabilities, both relativistic and ponderomotive,
is examined via kinetic simulations. The interplay between the
various processes is emphasized. Last, in Chapter VI we comment

on the relevance of the simulations to recent experiments.

IVB. Growth Rates

Section IVB is organized as follows. To begin, in Sec. IVB1
the growth rate and unstable k's for self-modulation and filamenta-
tion due to the relativistic correction to the electron mass for
plasma waves and light waves are reviewed. Posgible higher order
coupling between the light waves and the plasma wave is also dis-—
cussed. We clasgify the higher order couplings as resonant self-
focusing.63

The wvoluminous 1literature of other competing instabilities is
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reviewed. Processes that affect the light waves are discussed in

Sec, IVBZ. These are ponderomotive self-focusing and filamenta-
tion, BSBS, and SRS. In Sec. IVB3 ponderometive effects on the
plasma waves are reviewed, These include parametric decay, modu-

lational instability, and the OTSI. For all cases, growth rates
and unstable k's are given along with discussions on the relative

importance of each instability.

IVBl. Relativistic Instabilities

To describe relativistic filamentation and self-modulation, we
begin with the generalized nonlinear wave equation for either the

transverse or longitudinal normalized electric field.

32_ _ 2 =
[[8t2 - cfve) + o1 - ¢y |E:12)]E =0 (146)
103 wf - o . . .
where cy = ¢ and €y = E[E - 4”% — fﬁ] for linearly polarized light
waves and cj = (SKT/m]i/z and €5 = 8 for plasma waves. The fields

are normalized to ngi. A derivation of Eq. (146) for light waves
is in Ref. 28 and for plasma waves in Appendix A. In deriving the
wave equation in Eq. (146), only the lowest order nonlinearities
were kKept. When E, approaches unity, then the higher order non-
linearities need to be retained. (However, it can be shown that
the higher order corrections from relativistic effects are not that
important for values near E, = .8.)

The mechanism for filamentation and self-focusing can be des-

cribed gqualitatively as follows. The dielectric function corres-
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ponding to the wave equation in Eq. (146) is

2 £ 5
e=(1- g% + —é 1E12]. (147>

£

The phase velocity of a wave is largest where € is smallest.
Where [El is large, ¢ 1is also large and the phase velocity is
therefore small. So for a finite gize light beam or a filament,
the phase velocity is largest toward the outside of the beam. The
result is that the wavefronts curve to form a €, which means that
light is directed toward the axis. This will eventually cause
nonplanar wavefronts for the beat-excited plasma wave. The C
shape of the plasma wave seen in Chapter III was not the result of
this.

In order to be more quantitative, we determine the stability

of a plane wave by assuming that
E = 3(Ee™o + Ee™ 4 E eV 4 co) (148)

_)
where §, = kgx — wgt and g = [ﬁ + ko)-? - {w & wylt. Linearizing

Eq. (146) about E, by leads to the two coupled equations

-} 2.2 e 2. . 2 ,

(-2 + c3kZ + WRIE_ = 2upeIEgI2E_ + wfeE3E, (1493)
— 2 2 VA = VA 2 Z2c . FZ

( we + c%k + mp)E ZmPEJIEOI E+ + mpeJEoE_. (1490

The expressions
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2 - 32 - 2
wZ wf cﬁk* (150)
reduce to
2 2 2.0 2
w? + Zu0, - c3kZ & 2c§ kK - ky + ofeylE,| {(151)

by uging the dispersion relation for the pump
wg — mg - c%kg = ~ngjIEOI2. (152)

It is further assumed that E, = E; so that Egs. (14%a) and (145b)

reduce to

[—(mz - c%kz) - Z[mwo - cﬁa : ﬁo] - wgejiEoiz]E_
-~ wge jIEGI2E] = 0 (153a)

-3

[~(m2 - c3k2) + 2wy = 3K - Ko) - wﬁaleoiz]E:
- m%eJIEOEZE_ =0 {(153b)
These equations provide the dispersion relation

0 = (w? -~ c4k®)Z - 4lowy - cﬁi . §0>2 + (2uge y1Eq 12)(w? ~ cqkZ).

(154)
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5 &

if cj *> ¢ and € zq , this is the dispersion relation given by

Max et al. in Eq. (7)) of their paper.

For filamentation, KO'K = 0 and if we assume that @ <K CJR we
find
_ic k . _ /2
® = Eaf“ (208e 51E,12 - k2cg) !’ 2. (155)
Therefore, the threshold k for stability is

ke < VI wpe §1/21E,l (156)

while the maximum growth rate is

iwge ; 1E 12
o = Pty Rel” (157)
2w,
and it occurs for
- Al2
kcJ WpE j 1Eg |- (158
The assumption w <X cjk iz easily verified a posteriori. On the

other hand, the situation is mere complicated for the modulational

instability since Kk-ky = KkK,. For this case, w = k-vg + 4w where

k
Vg c% 5%. We now assume that Sw << kc to obtain the dispersion
relation
2 2
i z_ o .
[mg k2c§)” - 4(8w wy)Z + 20fe jIE,12 op ke = 0 (159
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S0
Uy

_}EEE(_: 2“85 21/2
dw = 5 (20fe § 1Eq | oz ke )H2. (160)

The threshold k is now

ke < VZ woe §1/21Eq (161)
Wy
a factor 55 larger than for filamentation. The maximum growth

rate is still

i?ﬁ
g . 2
® Fng EJiEOI

and it occurs for
Ke = wo€ 1/ 21Eq 1, (162)

which, just as the threshold k, is a factor %% larger.

For plasma waves and light waves near the critical density [%g
2 i), the 8w for the modulational instability is identical to the o
for filamentation. This could have been predicted simply by notic-

ing that v, << ¢; for these cases so that the inequality w? <X k2c§

g J
still holds for modulational instability.
Hidden in the analysis given above, when done for light waves,

are several assumptions. These become explicit in the analysis of
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Max et al.48 First, it is assumed that the electron density is
driven by the 3 * ]'3) force of the pump and the decay light wave.
This 3 x ﬁ force has a low-frequency {(w) component and a high-
frequency component o *= 20,. The derivation implicitly neglects
the former in preference for the latter. When the former domi-
nates, the process is called Forward Raman Scatter and the density
perturbation is a normal mode, i.e., 0 = wp- This can be summa-~-

rized by the inequality

1 << *gﬁ” . {(i63)

kec2

When this is satisfied, a distinction between Forward Raman is
valid and relativistic self-modulation exists. When it is not sat-
isfied the original assumption was invalid and therefore only For-
ward Raman exists. Substituting the k corresponding to the mode
with maximum growth rate, given in Eq. (162), into Eq. (163) leads

to the inequality

2
2 (¢ meP_

IEqt2 << JZ’wZEj . (164)
This inequality is not satisfied for parameters of interest to the
PBWA. Therefore, relativistic self-modulation of light waves will

2
not occur. Second, a complete derivation®8® assumes that w < §§ in
order to obtain the dispersion relation in the form of Eq. (154).

For self-modulation w = kvg = kc so this inequality can be rewrit-

ten as
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2 2
9P e
k < BoC 2 &, < o2 (165)
which is an even stronger constraint. When this inequality is not

satisfied, then the growth rate needs to be recalculated from the
fuller dispersion relation4® and then Eq. (163) needs to be checked.
On the other hand, inequality (163), for filamentation, is
IEgl? << 72—, (166)
3
which is valid for parameters of interest.

Typically, the unstable wave number for plasma wave filamenta-
tion is less thant mp/c. Hence, as the instability evolves, com—
ponents of the electric field in the transverse (y for slab geom-
etry) directions become important. When this occurs, the full set
of coupled wave equations describing electrostatic waves needs to
be used.

We close this discussion by noting that a power threshold can

be inferred from the threshold condition. If the transverse pro-
' X
file is assumed to be lcos = iii for Ix,1 <« % and the system is
periodic in L, then the k, = 0 mode is unstable into the k, = %E
mode if
2
3 cly E 12
€ ¢ B2 (167)
ngﬁ (23)2
L

The right-hand side is proportional to the power flux in a fila-
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ment . Changing back from the normalized units for E; gives the

nower threshold condition

13 me2y2 9§ wg
Pz cffe) ap = 169 5p ¥ (168)
for linearly polarized light waves. This power threshold is iden-

tical to the conclusions of the work by Horton and Schmidt62 and
Sprangle and Tang®! except for a small numerical factor. This is
not surprising since, after all, the physical mechanism is the same
for whole beam self-focusing and filamentation.64

In collinear optical mixing at least two light waves are
present. Te lowest order the simultaneous self-focusing of two

light waves can be described by the following coupled wave equa-

tions.

oZ i

£ . s2yz - 2 -~ 2

[atz c2v2 + w1 - € IE 12 ~ €, IE, | ]]E1 (169)

52

22 _ . e2yz 201 - 2 - 2

[35 - c2v2 + WB(1 - € 18,12 - ¢ 1E,12)]E, (170)

_13 _ 9E o _ . |

vhere €, = 2{4 g - w%) for linearly polarized light waves and
€, = 2. We simplify the problem by assuming that initially the
magnitudes are equal, Ei = Ez’ and that w o, >> Wp - For this situ-

ation the light waves will evolve almost identically. The two
coupled equationg can, consequently, be merged into the single

equation
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{ggﬁ - cZVe o+ “%[1 - (81 + 82)151f2]}5i. (171)

By replacing €5 = €, + €_ in Egq. (146), we immediately obtain the
J i 2

threshold kK condition for filamentation as
kZcZ < VZ wplEq12(eq + €3). (172

The growth rate and most unstable k are alsc anslogously obtained.
The presence of a plasma wave can enhance self-focusing of
light. The plasma wave influences the 1light wave through the
relativistic motion of the electron in the plasma wave. To see
this we write down the wave equation for one light wave in the
presence of another light wave and a plasma wave. The full wave

equation is now

a2
525 - ovz + (1 - eq1Eq12 - e51Ep12 - epIEpI2) |Eg (173)

where Ep is the normalized electric field of the plasma wave and

Ep = 1/4. Following the procedure of Kaw, Schmidt, and Wilcox, 63

the spatial scale of an equilibrium laser profile is then

-1/2
[[e1 + eg) IE1I2 + ep|Ep12] 174

<

The inclusion of Ep into the filamentation derivation is more
difficult since it is necessary to include the dependence of Ep on

E4 into the coupled equations. There are several ways Ep and E4 are
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coupled. The first is the result of BWE. Early in time, before

relativistic detuning {(for laser beams with no rise time}) E, =

p
EEqE3  EIE412
A = Z where £ ig the time measured from the head of the

laser pulse. Substituting this into the wave equation and under-
taking the same stability analysis given earlier gives the modi-

fied threshold condition

ck 2 €pt? g11/2
i < [eg + e 1E12 + = 1E{14) (175)
for a given K. BWE can also filament the laser light when it

breaks up into filaments as the result of relativistic detuning.
The breakup of the plasma wave was illustrated in Sec., IIIB7 wvhere
2-D BWE from finite size pumps was discussed.

The second is Raman Side Scatter (RSS). This instability will
be discussed shortly. It is the decay of a light wave (wq, ky)
into another light wave of frequency (wg - p s Ki - ﬁp) and a
plasma wave. Therefore, the high-frequency (wg) pump can decay
into a plasma wave with k = ﬁp + 6ﬁ* and w = w,. This can beat with
the lower frequency pump (wp) to generate a light wave at wg + wp =
@ and K + K, + 6K, = ky + 8K,. In addition, the daughter light
wave can beat with the beat plasma wave and produce a light wave of
w, kg + 6ﬁ$. This is precisely what filamentation of light would
produce. Furthermore, if 6ﬁL corresponds to an unstable mode for
filamentation it can be further amplified.

The third way that the plasma wave influences the light waves

is that the plasma wave itself can go wunstable and the region of




unstable k,’s overlaps that of the light wave(especially in a warm
plasma). This is further complicated by the fact that RSS may
create plasma waves that seed plasma wave filamentation. We stop
here with the reader hopefully believing that this problem is
extremely complicated.

We close this section with the comment that although the
stability analysis was done for plane wave pumps, it can still be
useful for nonplanar pumps. For example, if as 1is done in some
simulations the laser beam is modeled as one system with an
infinite number of image systems (periodic boundary conditions in
the tranverse dimension), then it could be constructed from only a
few discrete perpendicular k modes. If the ratio of the beam size
to the system size is small enough, then the k = 0 mode will be
largest. When the other modes are unstable for the k = 0 modes
pump strength, then they can be viewed as enhanced noise sources.
This description was successful earlier to cobtain a self-focusing

threshoid.

IVB2. Ponderomotive Force Driven Instabilities of Electromagnetic

Waves
In this section we briefly discuss instabilities that are
driven by the ponderomotive force of electromagnetic waves. The

instabilities to be discussed are SBS, SRS, and filamentation.

IVB2a. SRS

Stimulated Brillouin Scattering is the resonant decay of a
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light wave into another light wave and an ion acoustic wave. The
gituation of most interest i1z when the second light wave moves 1in

the opposite direction to the incident wave and this is called

Brillouin backscatter. The ion acoustic wave moves in the direc-
tion of the incident wave——the forward direction. SBS is of con—
cern for several reasons. First, it can reflect a large fraction

of the incident 1light, thereby decreasing the efficiency. Much of
the past researchl©:%1.57 ¢on SBS was concerned with this very
problem as it related to laser fusgion. Second, the resulting ion
acoustic wave acting as a density ripple can reduce the peak
plasma wave amplitude as discussed in Sec. IIB7. Furthermore, the
process gives rise to shorter wavelength mode coupled plasma waves
that heat the plasma through wave particle interaction. Third,
the backscattered light of one pump and the incident light from
the other pump can excite a plasma wave through counterpropagating
optical mixing. The phase wvelocity of this plasma wave 1is ¢ g%
which in general is slow and large enough to interact with the
background plasma. All three of these effects have already been
observed in current long pulse optical mixing experiments. It 1is
assumed that these processes are deleterious to the realization of
a high energy accelerator that provides good beam qualiCy.

For reference, we quote the well-known growth rates for
SBS.10,537 It is assumed that the instability of each light wave is

independent of the other light wave. The w and k without sub-

scripts are the frequency and wavenumber of the ion mode. If
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Ty VE wg 4 o (1/3

== << 1 and [-% ~E 2 & << 1,

ZTe (ag wf 8 cs)
then

Imw _ 1(Ssy1/2 Yo

Gy &) s (176)
This is referred to as the weakly coupled regime. If the second
inequality 1s not satisfied or, in other words,

v wd 1/3

2~ or I €M% 5 1

véL wf 16 Cs
then

Imo _ Y3 _(m @1 V8 1t/

Gy = [H Gy o2 2] AT
and this is referred to as the strongly coupled regime. In the

T
weakly coupled regime, if z%r- = 1, then the ion wave 1is heavily
e

Landau damped since w = kcg = Kvy On the other hand, in the

strongly coupled regime w is determined by the pump and since w >>

keg the idon mode (quasi-mode) 1is not affected as much when
Ty
ZTq

even strongly coupled SBS is suppressed.

T,
= 1, Simulations do indicate, however, that when i%—- = 1,
e

The Brillouin instability can be absolute, and the absolute

growth rate is
Imw, = 547 € Ypi - {178)
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T
This formula holds even for =——
7T,

1]
[N

Thigz is wvalid for pump

strengths such that

Imay,
Zkyeg

Yo Yp ¢
CETN < 1.

<1 or g

el

We also note, since it is a relevant point for accelerator param-
eters, that the grouth rate tends toward zero when kK2\3 >> 1.

The simulation results to be presented later are in agreement
with the linear theory when proper comparison could be made.
Although in the current experiments 8BS plays a major role, we
believe it can be avoided by wusing short laser pulses and/or by
making kZ\% >> 1 and/or by making ;%; > 1. Since the convective
growth rate 1is larger than the absolute growth, it dominates
initially. Asymptotically, the absolute mode dominates but we are
interested in relatively short times. The laser pulse duration
times the convective growth rate (for either strong or weak
coupling) gives an upper bound on the number of e-foldings of
growth. This is true, since the instability pulse convects at a
velocity << c. If the instability pulse moved at ¢, then, the
acceleration time rather than the pulse duration, should be used to
determine the number of e-foldings. If the number of e-foldings is

0(1) or less, then SBS will not be very important. Another way to

w§ ag wg
avoid SBS is to make kZ\4% = 4kZ g2 = JZ ;g oz > 1. If oz 2 1000,
P
az
then E% >> 1300 or Te >> 25 eV will satisfy this condition. This

is a reasonable electron temperature,
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IVB2b. SRS

Stimulated Raman Scattering is the decay of a light wave into
another light wave and a plasma wave, When the scattered light
is backscattered (RBS), the instability is & resonant three—-wave
decay process, However, for forward scattered light (RFS) it is a
four~wave (nonresonant) modulational type instability in very
underdense plasmas. Raman forward scatter has the same physical
origin as BWE. The 1light can also be scattered sideways and
this is called side scatter (RSS).

SRS is also dmportant for several reasons. RBS can reflect

laser light, although not as efficiently as ©SBS; and it will

c
generate a plasma wave with a phase velocity ~ 6?9 that is slow
enough to trap background electrons. The trapped electrons can

filament from the Weibel instability and this in turn can cause the
incoming light to filament.®4 RSS is important because it scatters
light out of the interaction regime. It also generates plasma
waves that trap the background electrons. RFS is not desired since
it broadens the spectrum of the plasma wave moving at c¢. By RFS wve
also mean scattering at small angles from the forward direction
(SRS which generates plasma waves with vy = cl. It alsc broadens
the light spectrum giving rise to light filamentation. A proper
2-D treatment of cascading in effect studies this very problem.

Below we quote the well-known growth rates for SRS.10:13  The
w and k without subscripts refer to the fregquency and wave number

of the low-frequency plasma mode. The growth rate for RBS is
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(179)
1
if E(
(180)
1
if 2

RES can be an abgolute instability with the growth rate

A Vg, W
Inw _ ¥3 Ze To %1 (181>

We emphasize these growth rates assume

2m§ ag
k2 3 << 1 or equivalently ;g“ oz << 1.
When this condition is not satisfied, the instability becomes

Induced Compton Scattering, which has a much reduced growth rate.

The growth rate for RFS in a very underdense plasma is
(182)

There is no absolute instability for this case since Vgp Vgo > 0.
The growth rates for RSS is comparable to those for RBS or RFS

depending on the angle of scattering. For most directions it is a
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three wave resonant process and its growth rate is reduced from

_a

kg + 2Ky K-
4kg

that of RBS by the facter where i‘)o iz the wave number

of the pump and ﬁ__ is the wave number of the decay light wave. For
scattering almost in the forward direction the growth rate is the
same as for RFS, This process needs to be included in any 2-D

treatment of cascading. |
The potential importance of SRS can be seen by estimating how
many e~foldings occur in a beat wave growth time. The growth time
3 Vo W 1/2 Vg

‘ (___)4 -1/3 - . B . ﬁg{_w)
is ~[1“024 z ] wp while the RBS growth rate is 2\, g

1’%21“%) 1/3 [?%] 1/2 (;:ip”]-i/a e have

neglected any rise time considerations. This gives an upper bound

g0 the number of e-foldings is (

on the number of e-~foldings, since the weakly coupled growth rate
was used. This number can easily be 0(1i-10). Simulations show
that indeed this gives a reasonable estimate. However, when RBS
occurs the resultant plasma wave guickly traps electrons and bregks.
The plasma heats up and RBS goes into the Compton regime. The front
of the plasma wave moves across the simulation box at roughly the
speed of light. This scenario means that RBS is evelving from
various noise sources rather than from a single one. The impor-
tance of RBS appears to be how the residual plasma gpectrum per-

turbs the accelerated particles.

£

Z
RBS can be avoided since typically KZ\{ = 2(%%) > 1. We

w
have already shown for a‘% = 30 this only requires T, > Z20eV. The

3N

[

growth rate for Induced Compton Scattering is low enough that in
general BWE can dominate it. The growth rate of RFS decreases as

the laser frequency increases. The importance of RFS will, how-
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ever, only really be known when a proper treatment of cascading is

done.

IVBZ¢., Self-Focusing and Filamentation

Previous treatments of whole-beam self-focusing assume that a
steady-state density channel has already formed. The simulations
demonstrate that this 1s not a reasonable assumption for large
laser power for times of interest. The development of the density
channel is strongly influenced by the evolution of relativistic
self-focusing and this will be illustrated in the forthcoming
simulationg. We should mention that recently Sprangle and Tang®!
have examined whole-beam self-focusing of short laser pulses for
long propagating distances while keeping the ions fixed.

Filamentation of light waves, as already discussed, is of con-
cern because it will alter the transverse profile of ther plasma
wave unpredictably. We start from the well-known growth rates.S57

yz. v2 2
In the weakly coupled regime, 1 : m% 95 << 1, the threshold
2 wf cg cg
o ek, v,
condition for k; is @ < EX and

Imo _ 1 Ypi V3
opi T 70 g (183)

The threshold condition is the same in the strongly coupled regime,

17pi Z6c2 »> 1, and the growth is

2 wg cf c
Imo 1 Yo
Gpi T ¥z T (184)
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The instability is never absolute. The steady-state spatial growth

length is
Imo | Imw
Imkj = voo * "¢ (185)
Vo  Wp
so long as . o1 << 1 wvhere Imu is the weakly coupled growth
e

rate. If this inequality is not satisfied, then the expression
for the gpatial growth length becomes more complicated. Steady
state may not necessarily be reached during the acceleration
process.

Although it occurs on ion time scales, the temporal growth
rate of ponderomotive filamentation can be larager than that of
relativistic filamentation, especially st low pump strengths.
The ratio of the growth rates for pondercmotive and relativistic

filamentation is

{186)

T

i

FIE
<0

o

Thiz is small for simulation parameters. However, for current

w .

experiments this ratio is larger than unity. For example, for aﬁi
_L Y% Yo . . s ratio wi
= 43 0 @y 10, and g~ = .03 the ratio is ~40. This ratio will

most probably be near unity for accelerator parameters.

In general though, the PBWA relativistic filamentation is of more
concern since in that case an unstable pulse moves at c and, there-
fore, has the laser pulse propagation distance in which to grow.

Another consideration is that the threshold k for instability
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is different in the two instabilities. For relativigtic filamenta-
k. c 5V k. c v
5;— < i% 59 while for ponderomotive filamentation 6;‘ £ 52

Even 1f the beam is narrow enough so that relativistic filamenta-

tion

tion cannot occur, it is possible that ponderomotive filamentation
. . Vo Vo
could still occur since e > &

Previous treatments of whole-beam self-focusing assume that a
steady—-state density channel has already formed. The simulations
demonstrate that this may not be a reasonable assumption for
larger laser powers for times of interest. The development of the
denzity channel can be strongly influenced by the evolution of
relativistic self-focusing, and this will be illustrated in the
forthcoming simulations. When the laser pulse enters the plasma,
if it is above the relativistic threshold it will begin to self-
focus immediately. On the other hand, the lasers cannot self-
focus due to ponderomotive effects until the ions have moved to
form a density channel. So, although the temporal filamentation
growth rates can be comparable, relativistic self-focusing always
occurs first when its power threshold is exceeded. We mention
that recently Sprangle and Tang®! have examined whole-beam self-

focusing of short laser pulses for long propagating distances while

keeping the ions fixed.

IVB3. Ponderomotive Force Driven Instabilities of Electrostatic

Waves
In these sections we briefly discuss plasma wave instabilities

that are driven by the ponderomotive force., The instabilities are
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parametric decay and the modulational instability.®6¢

IVB3a. Parametric Decay and Self-Modulation

Parametric decay is the decay o¢f a plasma wave into another

plasma wave and an ion acoustic wave. It is a resonant three-vave
interaction. The fastest growing mode occurs when the daughter
plasma wave propagates in the backward direction. In order that

all three waves in backscatter are normal modes, it 1is necessary

4(my1/2 JZ VE ©1e
60 = ;
that k\g > B[H] . In the weakly coupled regime, 4 2% Kgan

My 172 i
(5) << 1, and for ST << 1 the growth rate for backscatter is
e

v§ 1/2 a i/ 2
%§$ = [272 ;g{%] oy o] (18T)
The strongly coupled growth rate is
Imw _ J3[V8 KE my1/21t/3 _ y3rvE my1/271/3
b "2l w® ]t 7 izl ] (189)

If the strongly coupled threshold is not satisfied, then when

Khg < %[g)l/z

now modulationally unstable with a growth rate

. parametric decay is no longer possible. The wave is

Imw _ Wiy fﬁ
Gps O[pri ag]' (189)

When 22 is 1 th
en g is large then

o - 0[[2% %)1/4]. (130)
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In the PBWA, the plasma waves will easily be larger than the
strongly coupled parametric decay threshold. (Therefore, we do
not discuss the oscillating two-stream instability.) The ratio

of its growth rate to the relativistic self-modulation growth rate

is

1643 (2¢c4 m 1/3

== (VS W (191)
where we have substituted k, = %5 . For a hydrogen plasma, this
ratio is larger than unity for vg,g/c < 1. In fact, simulations

support this conclusion that parametric decay dominates relativis~
tic self-modulation. Parametric decay is also not easily avoided.
Raising the ion mass does not help very much due to the 1/3 power
dependence. Since the ion mode is no longer a normal mode, increas-
ing Ty/ZT, will not affect the stability much. The implication is
that significant beam loading needs to be done before gtrongly
coupled parametric decay occurs.

The relativistic driven instability may be ineffectual since
in BWE, as argued in Sec. IIB4, the plasma wave's phase velocity
depends weakly on amplitude when wavelength shifts are considered.
Since the amplitude dependence of the phase velocity drives the
modulational instability, itg effects may be minimized.

It is also worth noting that the frequency of a plasma wave
excited by BWE is always below its normal mode frequency. This is

seen in Eq. {(26b) of Sec. IIB2a where the frequency shift (&) is
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smaller than that in Eq. (24) with F set to zero. However,
because the pump is large enough the strongly coupled growth rate

of Ref. 60 is still spplicable.
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Chapter V. SIMULATIONS OF COMPETING  INSTABILITIES

VA. Introduction

In Chapter 1V wvarious competing instabilities were briefly
introduced. {The list is not intended to be complete.) With =o
many processes it is impossible to attempt an analytical treatment
that includes them all. Furthermore, most instabilities have a
range of unstable k's, so¢ modes from the same instability compete
with each other. It has only been in the last few years that work
has been done where even two instabilities have been studied self-
.consistently.3® Computer experiments present an attractive alterna-
tive, bearing in wmind their limitations. In this chapter we pre-
sent simulations that in some cases isolate a few selected pro-
cesses and in other cases examine the whole sglew of ingtabilities
at once. These simulations represent the first ever serious
attempt to examine competing processes in the PBWA. All other pub-
lished sgimulationsT:31,32 examined BWE only, Some of this work
has been presented elsewhere,5»15 but is given again so that this
chapter is self-contained. The code WAVE was used and the simula-
tion units are the same as before.

The outline of this chapter is as follows. In Sec. VB, simu-
lation results of self-focusing and filamentation of 1light waves
are presented. In Sec. VCl the SBS instability is examined under
two frequency illumination in 1-D. In Sec. VCZ2 the stability of
the plasma wave 1is investigated primarily in one dimension. The

SRS instability is discussed throughout as it relates to the other
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instabilities,

VB. Electromagnetic Self-Focusing and Filamentation

In this part we demonstrate via PIC simulations the early and
late time evolution of the laser beams for double frequency
illumination. Due to computer cost constraints, the size of the
simulation box is limited. In order to observe two-dimensional
ingtabilities, it is, therefore, necessary to use large laser
povers. This means that many instabilities occur simultaneously
making it difficult to 1isoclate processes. Therefore, the
philosophy used is to compare simulations in pairs where only one
parameter 1is changed. In this way statements about how the end
result depends on paramefers can be made, but unfortunately in some
cases the reasons for the differences cannot be conclusively in—
ferred.

In Sec. VB1 we examine filamentation and SRS of plane waves.
Immobile ions were used so ponderomotive filamentation effects
could not occur. In Sec. VBZ relativistic whole beam self-focusing
is demonstrated using lasers with various spot sizes. Both mobile
and immobile ions were used to clearly ddentify the ion inertia
effects. We present some evidence of rescnant relativistic and
resonant ponderomotive gelf-focusing by comparing single and double
frequency illumination. Last, in Sec. VB3 we investigate the long-

time behavior of the laser beams in these high power simulations.

VB1. Plane Waves
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The 2-D simulations in which plane waves were used are 111

through II6 in Table II. In this dissertation, only II3 and 114

Vo1 _ Vo2

will be discussed. The common parameters are —¢ = —& = .4, Ty =
2.5 KeV, b = w, = 120, L, = 120 S , and Ly = 20 & . Ve begin
- ' Mg + 1 x w.p: Y mpt

“1,2

with the simulation in which “5;“ = 4,4 and g = ®. $Since the ions
have infinite mass, then GBS and ponderomotive filamentation cannot
occur. The instabilities that occur are SRS and relativistic fila—

mentation. The pump strength is so large that SRS traps many back-

ground electrons. This gives rise to an anistropic distribution
function that drives the Weibel instability. Furthermore, as the

plasma heats up SRS turns into induced Compton Scattering. Thesge
two additional processes make it difficult to obtain clean resuits,
This problem exists for all the 2-~D simulations. RBS and RKSS have
the largest temporal growth rates so they appear before all other
instabilities. The temporal growth rates for RFS and relativistic
filamentation are comparable for ;9 ~ 1.

This simulation is summarized in Fig. 24. In Fig. 24a we plot

E
§%(kx’ ky) at mpt = 180 where the pump is clearly the dominant

mode. The modes with ky smaller than that of the pump corespond to
SRS, while the modes with Kk, equal to that of the pump represent
filamentation. Later in time, the same plot shows that SRS dis-

appears while the filamentation modes {(k = ﬁ % 6§$) persist. We

Q
plot IE,l vs. x for various ky's in Fig. 24b at wpt = 360. The

L
ky's are plotted as mode numbers where n = Eﬁ ky. At this time mode

1 dominates and it grows to the right. From Eq. (188) we find the

ck
Y 4

fastest growing mode for relativistic filamentation is ap or
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n = 1.27 and from Eq. (157) we find that it has a spatial growth
length of B0 g}—) (The spatial growth rate is the temporal growth
rate divided by the group velecity of light in this case.) We
expect, therefore, a few e-foldings of growth over the length of
the simulation box. For normal noise levels this would not be
significant. In these high intensity simulations the noise level
appears to be enhanced from the competing instabilities. We have
published simulations that describe one such mechanism in more
detail elsewhere.®% In fact, in that case even though the laser
intensity was below the relativistic filamentation threshold
filaments were still seen. The difference dis that here they
could be amplified.

To clearly identify the importance of these processes to BUWE,
we carried out an identical simulation except that 93—);32 .r» 5,4,
This is simulation II4 in Table II. If we assume that the insta-
bilities of one laser beam are independent of the other, then the

v
growth rates will be reduced bhecause now each beam has 2 = 4

«
while before, one beam had ;9 = 8.

We start by examining the longitudinal field E, at a time when
it has reached its peak amplitude. We plot in Fig. 25 both E, vs.
x at y = 10(:/mp and E, vs. y at x = 20c/mp at the same time wpt =
120. The E; vs. x plot matches the 1-D simulation result. How-
ever, the E, vs. y plot shows that there is significant variation
across a wavefront. Note that the slice in Fig. 25b is not

through the maximum or minimum of a wavefront. The perturbations

are due to the background noise and SRS. The SRS instability in
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Figure 25. The longitudinal field E, plotted vs. (a) X at v =
10c/w, and (b) y at x = 20c/wp at the same time

wpt = 120.




this case occurs when the E, driven by BWE decreases from relativ-
istic detuning.

The low-frequency pump (mZ) and the next cascaded mode (wp -
wp) appear to Raman backscatter, while the high-frequency pump does
not. Later in time SRS is predominantly in the forward direction
(l—zp + éﬁz). The residual plasma waves can beat together with the
cagcaded mode and the Ilow-frequency pump, or the residual light
waves can beat with the beat excited plasma wave to create light
wvaves at {(wq, kg4 + 8k,) and (wy, kg + 6k;). This is similar to
cas'cading but in two dimensions. This occurs more strongly than in
the single frequency run because the low-frequency light wave in
BWE does not grow from noise.

To compare the extent of filamentation between the single fre-~

quency and the double frequency simulations, the contour plot of

the laser field E, at mpt = 360 is presented in Fig. 26 from each

simulation. The filamentation is clearly stronger under double
fre— quency illumination. The filamentation is more coherent and
over a larger area of the simulation box. The perpendicular

wavelength is also shorter.

The simulations demonstrate that under double frequency illu-
umination the plasma wave initially exhibits 1-D like properties.
The wavefronts are eventually perturbed by the occurrence of RSS,
It is necessary, therefore, to determine how broad a spectrum of
slower phase velocity waves is tolerable for the beam quality
requirements of particle acceleration. Later in time filamenta-

tion is severe. The plasma wave, however, 1is turbulent by this
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Figure 26. Contour plots of E, at t = 360 for (a) single fre-—
quency and (b) double frequency illumination. The
values of the minimum and maximum contours are given,
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time. The propagation distance increases as wg/wg, while the
6/ W5

relativistic self-focusing growth rate decreases as mo/wp. The
number of e-foldings might therefore increase as mo/wp is
increased. This topic, therefore, deserves more investigation for

realistic laser profiles and background noise.

VB2. Finite Wave Fronts

We discuss simulations of illumination with finite wavefronts.

These are simulations II7 through II18 in Table II. Common param-
v v
eters are “%é = “%g = .56, Ta = Ty = 2.5 KeV, L, = LY = &0 %5, and

each laser beam has a cos? E% profile. The value of L, is varied,
while the profile is the same in every finite beam simulation. We
begin with simulations II7 and II8B. In both simulations. 2%33
= 5,4, L, = 20 &E’ and € = 300w51. The difference between these
two simulations 1is that in one case the ions are a gmooth uniform

fixed background, while in the other they are discrete with ﬁi

1836. The laser power used is above the relativistic self-
, o L Yoi | Yo2
focusing threshold. This is seen by noticing that for —& = —&— =

.56 the spatial scale given by Eq. (174} is considerably smaller

than L, = 20 Further confirmation is that condition (167) is

$I°

also satisfied.

Relativistic self-focusing is illustrated in Fig. 27 where the
contour plot of the laser field E; is shown at wpt = 330 for fixed
ions. The self-focusing first occurred near wph = 200. The wvalue

E2

of §% on axis at the right is double that of the left. The laser's

spot is reduced to ~5 %5 ag 1t self-focuses. This is roughly the
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Figure 27. The contour plot of the lasers' field E, at wpt = 330
for fixed ions. The values of the minimum and maximum

contours are given.
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equilibrium radius predicted by Egq. (174). The plasma wave is
neither coherent nor planar at this time. This is due in some part
to wave particle interactions. The plasma wave traps the back-
ground electrons in these high intensity simulations. We also
point out that toward the right-hand boundary an electron density
channel exists. This occurs despite the fact that the ions are
stationary. The ponderomctive force is large enough to balance the
gpace charge attraction (electron pressure is negligible since g%—
»>> 1). It will be shown shortly that with mobile ions the channel
properties are qualitatively different.

At earlier times, the lasers' profile is influenced by the
plasma wave. This is shown in Fig. 28 where a plot of E, vs. x and
E, ve. x for y = 30c/mp are shown at mpt = 180. The splitting
gtructure of the plasma wave occurs first and it arises from rela-
tivistic detuning. The presence of the plasma wave scatters the
incoming light due to the modification fto the index éf refraction
from both density and relativistic effects. The net effect ig that
the driver gets altered and this feeds back to the plasma wave.
This scenario is two-dimensional cascading.

In this simulation 8RS does not appear to be important. The
amount of reflected light.is = .1 percent., The absence of signifi-
cant SRS is partially due to the narrow lager beam since RSS does
not have enough distance to exponentiate.

In the mobile ion simulation there- are no significant differ-
ences in the initial stages of the plasma wave growth. Since the

jons are now discrete, the background fluctuation level is larger
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Figure 28. The (a) longitudinal field E, vs. x and (b} the

lasers' field E; vs. x at wpt = 180 for y = 30 c/wy,.
The value of L, is 40 c/wy,.
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and this can explain any differences. Later in time, an ion
channel forms which initially enhances the self-focusing. This is
illustrated in Fig. 29 where the x-y, Vy ve. X, and VY vs. ¥y ion
phase space are plotted and in Fig. 395 where the Ej; contour plot is
plotted at mpt = 420. The ponderomotive force pushes the electrons
out, The resulting space charge field then pulls out the ions.
The space charge field is approximately equal te the ponderomotive
force. As the ions are expelled and the channel width gets larger,
the beam begins to expand as seen in Fig. 30. This did not occur
in the fixed ion case. The position in x at which this occurs
moves toward the right, This will be shown later in the long-term
behavior section. The time it takes for the channel to form can
be estimated by calculating how long it takes an ion to move a
fraction of the beam radius under the influence of the ponderomo-
tive.force. Following this procedure we find

O'-1/2140 Vi _mct d

1
.t o= and 7= = © & = (EZ + EZ + EZ>
PLY T Bz + B2 + ERY? ¢ " Mly2 1 Tz P

where L, is the beam diameter, & is the fraction of the bean
radius an ion moves, and <E§> ig the time average of the normalized
. fields intensities. Using L, = 20, a = 1/4, and <E§> = 1/4 gives
an approximate time of wpit = 10. (This is in reasonable agreement
with the simulations as seen in Fig. 25%b.) The maximum velocity
calculated by the same arguments 1is also in agreement, As the

laser beam self-focuses from relativistic effects, L, decreases

and, if absorption 1s ignored, Eq, Ez, and Ep increase. Both
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The (a) x-y, (b) V, vs. x, and (¢} VY vs. y ion phase
¢ space plots of wpt = 420. Simulation parameters are
aq = ap = .58, T = 300m51, and L, = 20 c/wp.
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Figure 30. (a) The contour plot of the lasers' field E, at
wgt = 480, The value of L, = 20 ¢/wy. The values of
the minimum and maximum contours are given.
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effects cause the ponderomotive force to increase and, consequent-
ly, cause the channel formation time to decrease. More will be
said on this when simulations with L, = 40 %5 are presented. The
transverse ion velocities are largest on the right because the
laser beam is self-focusing. This is shown in Fig. 29b in the Vy
vs. x phase space plot.

In the Vy ve. y phase space plot in Fig. 29c it is demonstrated
that the ponderomotive force acts like a piston and sets up a shock
front. The ion velocities are larger than the ion sound speed by
roughly a factor of 5. It will consequently take a long timé
before any equilibrium is established. The ion channel is largest
on the left. This seems to contradict the observation that the ion
transverse velocities are largest on the right. The resolution is
that, since the laser beam has self-focused, the beam is narrowver
and the electric field is larger on the right. The ponderomotive
force is consequently larger, so the velocity is larger. The
channelu width is determined by the integral of the velocity over
time. So, even though the velocity was larger on the right at this
time, the.integral of the velocity over time was smaller.

In simulation II11 the laser spot size 1is doubled. Since the
laser intensity is kept constant, the laser power is further above
the relativistic self-focusing threshold. The laser is amplified
more than in the smaller spot size simulations. This is demon~
strated in Fig. 31 where the contour plot of the light leaving the
right-hand boundary is presented at mpt = 307. This time is chosen

gince the ions have essentially not played a role yet, so the
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Figure 31.

X(C/wDe)

The contour plot of the lasers' field E, leaving the
right-hand boundary at t = 307 for (a) Ly = 20 c/mp
and (b) L, = 40 c/wy. The values of the minimum and

maximum contours are given.
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relativistic effects are isolated. From Fig. 31a where L, = 20 =,
the peak value of E, is determined to be 6.3. In these units the
input value of E, is 4.3. This is to be contrasted with Fig. 3ib
where E; is found to be 7.7. In terms of intensity, this is a 50-
percent difference. The focused radii are ~5 %g in both cases. We
also mention that the plasma wave scatters light, as before, early
in the simulation when the plasma wave is large and coherent.

The increase in the laser intensity leads to larger transverse
ion wvelocities. However, due to the larger initial beam radius,
the ion channel ¢takes longer to form. The ponderomotive force
creates a shock, as before, making it impossible for any equili-
brium density profile to be attained during the simulation. As the
channel forms it initially leads to further amplification, In the
Lo = 40 %5 case a factor of 4 increase in intensity over the length
of the box is observed at wpt = 540, while the laser spot reduces to
22 $-. This is shown in Fig. 32a.

Un

The larger wvalue of L, leads to ponderomotive filamentation
late in the simulation. This is evident in Fig. 3Z2b where a con-
tour plot of E; leaving the right-hand boundary is given at mpt =
768. The amplification is not as large as at either mpt = 307 or
540 and this is because the plasma has been evacuated from the beam
region. This, in effect, eliminates the dielectric properties of
the plasma. Instead, the channel becomes a waveguide. However, as
the ions are evacuated they initially pile up at the edge of the
beam, giving rise to large spikes in the ion density. As the ion

channel continues to evolve, the density spikes Tradiate™ ion
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Figure 32.

60
X(C/QJpe)

The contour plot of the lasers' field E; leaving the
right-hand boundary for L, = 40 c/mE at (a) wpt = 540

and (b) mpt = 768. The values of the minimum and

maximum contours are given.
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fluctuations. These fluctuations then appear to seed ponderomotive
filamentation at the edge of the beam.

When the lasers' rise time is increased from v = 300 to T =
800, the amount of amplification decreases. This is determined
from simulation 1112 where the maximum amplification was a factor
of 3 in laser power. This occurred at wpt = 300. The Y%E thresh~
old necessary for self-focusing for this beam profile iz ~.3. This
is roughly one-~half the peak value. From the form of h{(t), this
does not occur until a little past /2. In this =imulation the
first sign of self-focusing is near wpt = 450 and.it is predomi-~-
nantly the result of relativistic effects, since the ions have
hardly moved by this time, The ions deo, however, move soon
afterward and this will be shown shortly. It seems, from these
gimulations, that the amplification is 1largest when the onset of
relativistic and ponderomotive effecte are clearly separated in
time. In this simulation there is no clear separation in time
between the two types of gelf-focusing.

Late in the simulation filamentation is also observed, just as
in the v = SOOwﬁi gimulation. The filamentation is observed around
wpt = B850 or at the peak of the laser rise time. The amplification
for filamentation is larger than in simulation II41. The reason is
that the channel is not completely formed, &0 the whole beam is
being amplified rather than merely being trapped while it fila-
ments.

To clearly identify the differences between single and double

freguency illumination, simulation II14 was conducted. Self-
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focusing is observed in the single-frequency case at nearly the
same time wpt = 500, as in simulation II1Z; but it is not nearly as
strong. The reason seems to be due to the existence of the large
amplitude plasma wave. At thie early time, ponderomotive effects
are not that significant, so we argue this is evidence of resonant
relativistic self-focusing. In Fig. 33 we plot the contour plot of
E, leaving the right-hand boundary from both simulations at wpt =
537. Figure 33a is from simulation IIi4, while Fig. 33b is from
simulation II12. There is clear evidence of self-focu=zing in Fig.
32b, while in Fig. 32a it is questionable that self-focusing is
taking place. {Not all of the laser energy focuses toward the
axis in the two frequency, L, = 40c/w, simulations. This is seen
in Fig. 33b where the outer contours are evident.

Since the lasers self-focus =sooner under double frequency
illumination, the ponderomotive force is larger and the ions are
pushed out earlier. This is illustrated in Fig. 34 where the ion
phase space plots are presented from both simulations at wpt = TZ0.
The phase space plots shown are Vy ve., ¥ and VY vs. v. In Fig. 34b
the ions have already been accelerated to velocities five times the
sound speed, while in Fig. 34d the ions are just beginning to be
accelerated. A qualitative difference is that the maximum ion
velocity 1is constant along x in Fig. 34c, while it varies in Fig.
34a. This could be due to twe differences. First, the lasers
gelf-focus causing the ponderomotive force to increase with posi-
tion; and second, the plasma wave contributes to the ponderomotive

force in the double frequency case. We do not have a model that
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Figure 33.

The contour plot of the lasers' field E, leaving the
right-hand boundary with L, = 40 c/mp and T = 800 for
(a) single frequency and (b) double frequency illumina-
tion at mpt = 540. The values of the minimum and
maximum contours are given.
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The time is wpt = 120 with T = 800w51.
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quantitatively describes this behavior as vyet. In both simula-
tions II12 and 1114 filamentation eventually occurs. It occurs
first in the double frequency case by roughly SOmgi.

Under double frequency illumination, when the lasers' rise time
ig reduced to T = 150w51 (I116), the properties of the channei
depend strongly on relativistic self-focusing. The lasers have
relativistically self-focused strongiy by mpt = Z00. This is
illustrated in Fig. 35a from the contour plot of E; leaving the
right-hand boundary at wpt = 237 presented in Fig. 35a. The spot
gize is reduced to =25 %; and the intensity is amplified by a factor
of 2.25. The ions have not acquired much transverse velocity by this
time. If all the laser energy was focused to the axis , the "pon-
deromotive force" would be larger by roughly a factor of 15, since
it is proportional to the intensity divided by the spot size. (The
15-fold increase neglects relativistic corrections.) The ions
respond more quickly on the right, since the integral of the force
is larger. This is illustrated in Fig. 35b where the Vy vs. x and
VY vs. vy ion phase space plots are shown at mbt = 210. The maximum
ion transverse velocity increases approximately linearly in x. In
Fig. 35c there are two prominant peaks (one for positive Vy the
other for negative VY). The ions that constitute the peaks are
those in the right half of the simulation box.

In this simulation (1I16) the ion channel forms first on the
right. This is in contrast to simulation II11 where, in spite of
relativistic self-focusing, the channel forms on the left first.

The qualitative difference between the two simulations exists

167




Figure 35.

(a) The contour plot of the lasers' field leaving the

right-hand boundary E, at wpt = 237. The (b) Vy, vs. X
and {(¢) ¥V, vs. y ion phase space plots at wpt = 210.

The value of L, = 40 c/wy and T = 150wpt. The values
of the minimum and maximum contours are given.
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because the shorter rise time allows the self-focusing to exist
over a larger percentage of the simulation duration. In simulation
118, wvhere a narrower initial spot size was used, the channel forms
more uniformly along x. This occurred becaugse the ponderomotive
force was more uniform along x.

In simulation II16 the lasers’' maximum amplification over the
length of the box was a factor of 4 in intensity. The beam width
collapsed down to =2 %5. This occurred at wpt = 537. All three of
the above, including the time, are almost identical to simulation
I111 where the rise time was doubled, Late in the simulation at
mpt = 614 the laser beams start to filament. This is similar to
both the other large spot gize double—frequeﬁcy simulations.

The behavior in simulation II15, where single-~frequency illumi-
nation was used, was qualitatively quite different. Rather than
initially self-focusing, the laser beam immediately filaments.
This filamentation is first observed at wpt = 130. (6 ps for COp
laser parameters). The evolution is summarized in Fig. 36. COs
parameters were assumed for the labeled times. Thé ion density
on—-axis in the left half filaments the light. The cause for the
filamentation appears to be quite involved., Similar behavior was
observed in simulation IIi4, and more detail was given in an earli-
er publication®%; hence, we only briefly describe the observation
here. The incident electromagnetic wave generates a spectrum of
plasma waves from RBS and RSS. The plasma waves trap and acceler-
ate electreons generating an anisotropic electron distribution func-—

tion. The anisetropic distribution function then drives the Weibel
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Figure 34. The ion phase space plots (a) Vy, vs. x and (b} V,, vs.

y for double frequency illumination and (c) V, vs. x
and (d) V,, vs. y for single frequency illumination.
The time is wpt = 120 with T = 800w51.
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quantitatively describes this behavior as vyet. In both simula-
tions II12 and 1114 filamentation eventually occurs. It occurs
first in the double frequency case by roughly SOmgi.

Under double frequency illumination, when the lasers' rise time
ig reduced to T = 150w51 (I116), the properties of the channei
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time. If all the laser energy was focused to the axis , the "pon-
deromotive force" would be larger by roughly a factor of 15, since
it is proportional to the intensity divided by the spot size. (The
15-fold increase neglects relativistic corrections.) The ions
respond more quickly on the right, since the integral of the force
is larger. This is illustrated in Fig. 35b where the Vy vs. x and
VY vs. vy ion phase space plots are shown at mbt = 210. The maximum
ion transverse velocity increases approximately linearly in x. In
Fig. 35c there are two prominant peaks (one for positive Vy the
other for negative VY). The ions that constitute the peaks are
those in the right half of the simulation box.

In this simulation (1I16) the ion channel forms first on the
right. This is in contrast to simulation II11 where, in spite of
relativistic self-focusing, the channel forms on the left first.

The qualitative difference between the two simulations exists

167




Figure 35.

(a) The contour plot of the lasers' field leaving the

right-hand boundary E, at wpt = 237. The (b) Vy, vs. X
and {(¢) ¥V, vs. y ion phase space plots at wpt = 210.

The value of L, = 40 c/wy and T = 150wpt. The values
of the minimum and maximum contours are given.

168



because the shorter rise time allows the self-focusing to exist
over a larger percentage of the simulation duration. In simulation
118, wvhere a narrower initial spot size was used, the channel forms
more uniformly along x. This occurred becaugse the ponderomotive
force was more uniform along x.

In simulation II16 the lasers’' maximum amplification over the
length of the box was a factor of 4 in intensity. The beam width
collapsed down to =2 %5. This occurred at wpt = 537. All three of
the above, including the time, are almost identical to simulation
I111 where the rise time was doubled, Late in the simulation at
mpt = 614 the laser beams start to filament. This is similar to
both the other large spot gize double—frequeﬁcy simulations.

The behavior in simulation II15, where single-~frequency illumi-
nation was used, was qualitatively quite different. Rather than
initially self-focusing, the laser beam immediately filaments.
This filamentation is first observed at wpt = 130. (6 ps for COp
laser parameters). The evolution is summarized in Fig. 36. COs
parameters were assumed for the labeled times. Thé ion density
on—-axis in the left half filaments the light. The cause for the
filamentation appears to be quite involved., Similar behavior was
observed in simulation IIi4, and more detail was given in an earli-
er publication®%; hence, we only briefly describe the observation
here. The incident electromagnetic wave generates a spectrum of
plasma waves from RBS and RSS. The plasma waves trap and acceler-
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instability causing the accelerating electrons to filament. The
current filaments give rise to electron density striations. The
space charge field then forces the ions to follow. The density
striations then cause the lasers to filament. This description is
by no means conclusive as it involves many inferences. However,
it hopefully points out the richness of the plasma physics that
oceurs when a high dntensity light impinges on an unmagnetized
plasma. The amount of reflection from RBS in this simulation was
.4 percent. This ig larger than in simulation II14 because of the

lower initial electron temperature,.

VB3. Long Time Evolution

The gimulations model a certain section of plasma with the
laser pulse moving through it. On the other hand, what is of
interest for the PBWA is the evolution of the laser pulse as it
moves inte fresh plasma. In order to obtain a better idea of the
gelf-focusing behavior of the laser beams for longer propagation
distances, simulation II9 was done. Simulation parameters were
identical to IIB except for the system size, which was doubled in x
and halved in y.

The resgults are summarized in Fig. 37 where the contour plot of
the lasers' magnetic field BY is sheown at mpt = 390 and wpt = 600.
At mpt = 390, the laser is at full intensity across almost the
entire box since T = 300m§1 and L, = 120 %5. In Fig. 37a the effect
of relativistic self-focusing is evident. The laser collapses to

its narrowest point at x = 30 &5 and then remains at a reasonably
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Figure 37. The contour plot of the lasers' field E, at (a) wgt =
420 and (b) wpt = 600 for T = 300wp! and Ly = 20 c/wp,.
The values of the minimum and maximum contours are
given.




constant diameter of =5 %; in the second half of the box. The left
half of Fig. 37a is essentially identical to Fig. 30 taken from
simulation 1I§. Even by this time an ion channel has formed,
especially on the left. However, the laser profile is determined
primarily by relativistic self-focusing. From this simulation it
appears that the leading edge of the laser pulse collapses down to
a rather constant radius in the absence of ion inertia for dis-
tances larger than the acceleration (Zny$2 c/mp) distance.

Sprangle and Tang®! have recently investigated under what condi-
tions the beam radius oscillates, remains constant, or blows up.

The effect of the channel formation is seen in Fig. 37b. The
peint at where the laser beam first ceonverges has moved slightly to
the right. As time progresses further, this point continues to
move to the right. The laser beam then begins to expand before it
igs focused again. Furthermore, the laser beam has expanded every-
where along x. This occurs when the ions are expelled, since the
laser beam fills the entire channel. As the laser beam continues
to expand, the ponderomotive force pushes the channel wall out fur-
ther. The ions, having acquired significant velocities, would con-
tinue to move outward anyway. Steady state is, therefore, not
readily attainable in these high intensity simulations where the
relativistic self-focusing occurs first.

As the laser continues to move into fixed plasma (ignoring
energy loss to the plasma wave), the ions will be expelled more
quickly since the ponderomotive force gets larger. As discussed

earlier, this increase in the ponderomotive force can be substan-
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tial. In some cases, with enough laser power the eventual ponder-
omotive force could expel the ions on time scales less than an ion
plasma period.

An interesting possibility is that the laser pulse could lose
energy to the plasma wave at such a rate that relativistic self-
focusing would keep the 1intensity on-axis constant. In this way
the ponderomotive force of the focused beam would not be quite as
large and the channel would take longer to form.

We summarize by stating that this simulation with a larger Ly
indicates a laser beam may relativistically self-focus to a beam
radius on the order of a few %B for "long" distances. We do not
wvant to make any unwarranted conclusions based on only one simula-
tion. However, due to computer cost constraints this is all that is

available to date.

VC. Ion Instabilities

Earlier in Sec. I1IB6 we described results that indicated that
the discreteness of the ion background is important. We also dem-
onstrated that a single large—-amplitude ion ripple (which requires
ion dynamics to form) can lead to mode~coupling that disrupts the
BWE process. In this section we illustrate via kinetic simulations
how ion inertia is deleterious to BWE in 1-D.

Jon inertia gives rise to several competing instabilities. In
Chapter IV we identified SBS of the light wave and parametric decay
of the plasma wave as the most important 1-D ion instabilities.

Although both instabilities occur in most simulations, their
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effects are easily separable. We therefore discuss them separate-

ly.

VC1. SBS
We begin by describing simulation 1116 since it is very illus~
trative. The other simulaticons are presented in the context of how
they differ with simulation II16. The relevant parameters of 1146
are
Vos My

T.
&= .1, 01 2 = 5,4, 8. = .03, g = 1836, ;r-i = 0, Ly = 1005-,

and T = SOmpi.

SBS is therefore in the highly coupled regime, and the convective
growth for the low-frequency pump is .02 Gy« The instability is
already evident at wpt = 315 in the ion density spectrum, Inj(k)i2,
plot shown in Fig. 38a. (By this time there has been six e—-fold-
ings of growth.) The largest modes are 2Ky, where kg is the wave-
number of the low-frequency pump, and 2(Zky; - kq)}, where kq is the
wavenumber of the high-frequency pump. The mode at 2(2Zkgy - kgl
corresponds to SBS of the first low-frequency cascaded mode. Al-
though at this time the ion wave is large with %ﬁ =z .1 the amount
of integrated scattered power is low, ~.1 to 1 percent. The large
ion wave allows the BWE wave to mode couple to shorter wavelength

modes. This is seen in the hashy appearance of the plasma wave

depicted in Fig. 38b. In Sec. IIIB5 this behavior was already
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described for a pre— existing ion ripple. Later in time the scat-
tering is predominantly from the low-frequency cascaded mode. The
gcattered power eventually becomes as high as 10 percent of the
incident povwer.

The mode coupling in the plasma wave k space is not entirely
the result of the SBS ion wave. This is strikingly demonstrated in
Fig. 3%9a where with fixed ions the high k modes are evident in the

2
“Z(x) plot. This is very similar to the identical type of plot

8n

from the mebile ion simulation. In the mobile ion case there are
more peaks and they are slightly larger. The coupling results from
RBS. The electron temperature is low enough that 2Zk;hg << 1 go it
hags a higher growth rate than SBS and thus occurs first. RBS is not
in the Compton regime. (In some experimental situations SBS occurs
first because it has a lower threshold.}) However, from monitoring
the reflected light we observe RBS to occur in a short burst, heat
the electrons, and shut off. When mobile ions are used, the amount
of reflected light continues to increase; while with fixed ions,
the reflected light c¢eases since 8BS begins to occur momentarily.
In the fixed ion case the short wavelength fluctuations in the E,
vs. x plots are reduced toward the left-hand boundary; while in the
mobile ion case, they continue. This is shown in Fig. 3%b where E,
vs. X is plotted at wpt = 315 from simulation I15. When compared
to Fig. 38c, the reduction of the hash is noticeable. The ion wave
ig shown in Fig. 38b. The ion wave is clearly largest toward the

left, and since SRS is no longer occurring there, SBS is the sole

reason that E, is not smooth on the left-hand boundary in Fig. 38c.
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The growth rate for SBS scales as the mass ratio to the -1/3
power. A smaller mass ratio provides a larger growth rate. In
gimlation I17 the mass ratio is reduced to 400, giving a growth
rate =.03, which is 1.5 times larger than before. In this simula-
tion the amount of RBS decreases, while the amount of SBS increases.
The electric field E; vs. x is given in Fig. 39c at mpt = 315, The
plasma wave is smaller in amplitude on the left than before in Fig.
38c. This could be the result of the large ion fluctuations
(smalier mass ratio) providing an effective damping.

When the temperature ratio Ti is 21, the ion wave 1is heavily
Landau damped. In simulation I19 the ratic was set equal to unity
to see whether SBS could be suppressed. The laser intensity is in
the strongly coupled regime. This simulation can be summarized in
Fig. 40 where the k spectrum of the ion density, Inj(k)12 vs. x, is
plotted at wpt = 405 and 495. At the earlier time there is some
evidence of SBS (peaks at 2Zk; of the 1light), but it ie signifi~
cantly reduced from simulation 116 where the temperature ratio was
Zero. The peaks at 2k, arise from the decay of the plasma, and
this is discussed shortly. It is also worthwhile to note that
while SBS was reduced, SRS was more prelavent later in time. RBS
occurred as before in a sghort burst ({(although this was reduced’,
but whereag before SBS subsequently occurred, in this simulation
RBS recurs. It would appear that SBS shuts off SRS. The interplay
between SRS and 8BS is currently under intensive investigation in

the laser fusion community and the interested reader should consult

those references.>5?
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In simulation I18 there are two changes from simulation I16,
the meaningful one being the reduction in the laser power. In this
simulation both SRS and SBS occur as before. The interesting point
is that now the dominant SBS mode is that corresponding teo the low-
frequency pump rather than the first low-frequency cascaded pump.
The reason for this is simply that, feor this system size, the
amplitude of the plasma wave for the cascaded mode is not large
enough to scatter.

In simulation 123 the pump was lowered even further. The
electron temperature was increased but this should not be a signi-
ficant factor. The instability is still in the strongly coupled
regime with a growth rate .008 W, - No significant SBS is observed
during the simulation. This length of the run was 450 wgi 80 the
maximum number of e-foldings was 3.6. The plasma wave grows in the
expected fashion. In this simulation initially the ion temperature
was Zero. The ion fluctuations were, consequently, very small.
During the c¢ourse of the simulation, as the ions thermalize the
fluctuation level increased. The plasma wave 1s never very smooth
and background fluctuations may be the reason.

The scenario observed in simulation I22 is quite different from
the above description. Due to the initial finite temperature
(T{/Te= .05) the fluctuation level of the ion density is signifi-
cant to initially impede the plasma wave growth. This was dis-
cussed in Sec. IIIB6. Furthermore, the reduction in the mass ratio
means that the growth rate is larger than in 123, .016 Wy, even

though SBS is now in the weakly coupled regime. Once the ion wave
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grows the plasma wave growth ceases. No resemblance of a BWE
plasma wave is evident. Furthermore, the amount of reflected power
approaches 25-50 percent of the incident power. Most of the re-
flected power is in w = Qmp mode. If this much power is reflected,
then the amount available to drive the plasma wave is profoundly
reduced.

In simulation I21 the temperature ratio was increased to T;/T,
= .2. This reduced the amount of SBS in the earlier times. Where-
as in simulation 122 the amount of scattered power was ~40 percent

at mpt = 614 and 25 percent at mpt = 921, in simulation I21 the

n

fractions are ~50 percent at mpt 64 and 25 percent at wpt = 921.
This difference was not a factor in the BWE process since a dis-
cernible BWE wave was not excited in either case.

In the 2-D simulations SBS was not a factor for several rea-

sons. First, the temperature ratio was unity and second Zkghg was
~.T7. The temperature ratio was set to unity intentially in order
te avoid SBS. We point out that in general wave-particle inter-

actions heat electrons.before the 1ions. This will lower the tem—
perature ratio but it will also increase Zkyhg. In addition, the
plasma wave is excited very quickly when the pump strength is so
vZ.1/3
0
large. The growth rate for strongly coupled SBS scales as [EEJ
vz
while the resonant growth for a BWE scales as E%'
To obtain a handy fermula to determine the importance of SBS,
we multiply the strongly coupled growth rate by the BWE growth

time to obtain the number of e-foldings in a BWE growth period.

This gives
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1/3 w1, 1/3
W (o)

No., of e~foldings = 4.8[ a1'1/3

This predicts only a few e-foldings of growth for the 2-D simu-
lations. In eventual experiments gf will be smaller but the number
of e- foldings given by the above formula will be only slightly in-
creased because of the 1/3 power.

In sum, we have found no real surprises. SBS can, as expected,
reflect a significant percentage of the incoming light. For SBS to
be important the pulse needs te be at least a few temporal growth
times in duration. The Ilower frequency pump and the lower fre-
quency cascaded waves (if they become intense enough) are the waves
that Brillouin scatter. By increasing the temperature ratioc the
instability is significantly reduced or suppressed. Mode coupling

ig observed, although it is complicated by simultaneous occurrences

of BSRS.

VC2. Parametric Decay

The previous section addressed SBS, an instability of 1light
waves based on ion inertia. In this section we investigate strong-
ly coupled parametric decay on an ion inertia based instability of
the plasma wave. We find that it is the most salient instability
of the plasma wave.

It was earlier argued that the plasma wave is relativistically
modulational unstable owing to the negative relativistic nonlinear

frequency shift. It was subsequently argued, based on their linear
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growth rates, that strongly coupled parameteric decay is typically
dominant. To confirm this, we compare the plasma wave evolution
from simulation I18 to that of simulation Ii6. In Fig. 41 we plot
the E, vs. x at wpt = 495 from both simulations. Recall that in
the SBS section we gave the same plots at mpt = 315 to demonstrate
mode coupling. For the fixed ion case, the plasma wave is rather
coherent in appearance. In contrast, with mobile ions.the wvave 1is
incoherent and unacceptable for use im a particle accelerator.
Although not shown, at wpt = 540 the wave is completely incoherent.
The reason for the incoherence is discerned in the density spectrum
where a large peak at 2k, is evident. This is shown in Fig. 42a.
This results from parametric decay in the strongly coupled regime.
The growth rate from Eq. (189) is .03 Wp for e, = .2. Therefore,
over the course of the simulation several e—foldings of growth were
possible.

Increasing the temperature ratioc does not prevent strongly

coupled parametric decay from occurring. In simulation Ii9 the
temperature ratio is unity. While SBS was suppressed, parametric
decay was not. In fact, it is more prevalent for the higher

temperature ratio. This is seen in Figs. 40b, 41b, 4lc¢, and 42a.
In the density spectrum Inyj(k)i2%, the peak is larger and broader
for the 2k, mode in Fig. 40b than in Fig. 4Za. Furthermore, the
electric field dis noticeably more incoherent for the larger
temperature ratic as shown in the E, vs. x plots in Fig. 4le and
Fig. 41b. All plots were for mpt = 4935, A possible explanation

for this observation is that the ion wave from SBS hinders the
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decay of the plasma wave.

In simulation I18 the pump strength was lowered from & = .1 to
& = .05. The plasma wave amplitude is therefore reduced. The
growth rate of strongly coupled parametric decay is lower, so con-
sequently it occurs later in time. This is shown in Fig. 42 vhere
the density spectrum Inj(k)[2 is plotted from both I16 and I18 at
wpt = 495, The mode at 2k, is 10 times smaller for the smaller
wave amplitude. The plasma wave is nevertheless equally as unac-
ceptable for a high energy accelerator. The number of e-foldings
of instability growth can be obtained by integrating the growth
rate over the BWE growth time. If the rise time of the lasers is

neglected, we find

m)1/3 ~a/o.

No. of e—foldings = n = 4‘2(ﬁ aq
The wvalue of n scales a1*3/9. This means that for larger punp
strengths the plasma wave is excited so fast that less decay is
observed even though the plasma wave is larger.

The plasma wave 1is never large or ccherent enough to undergo
parametric decay in simulations I21 and I2Z. The background noise
and S5BS were, by themselves, enough to prevent plasma wave growth.
On the other hand, in simulation I2Z3 a plasma wave was excited due
to the lower noise level. However, over the length of the run it
did not get large enough to go unstable. At wpt = 450, the end of

the run, a peak at 2k, was barely discernable in the ion density

spectrum.
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In the 2-D simulations strongly coupled parametric decay wvas
also seen. In the high intensity simulations where E%g = .56 it
was not a problem in the short rise time simulations. It did occur
later in time, but this was after a Rosenbluth and Liu cycles of
growth and decay. The plasma wave saturated before parametric decay
occurred. Eventually instabilities of the laser beam occur and

wave~particle interactions disrupt the recurring excitation pro-

Cess. In the longer rise time high-intensity simulation 1112, the
instability was evident. This is shown in Fig. 42c¢ where the ion
density spectrum is presented for wpt = 540, This is a major

reason for the inability to excite as coherent a wave in simulation
1112, the long rise time simulation, as that excited in the short
rigse time simulations.

When the pump is reduced to gg, = .14, parameteric decay is
dramatic. With no SBS occurring, the long wavelength ion wave is
clearly evident. This is shown in Fig. 43a and b where the contour
plot and a slice plot through vy = 30c/mp of the ion density are
presented at mpt = 450, The density spectrum is similar te that in
Fig. 4Z2c. The ion wave approaches &N/N = .5 in some places. The
instability is strongest in the center of the box. The plasma
wave amplitude 1s near e, =z .3, so the strongly coupled growth
rate is .6wpi. The plasma wave is correspondingly very incoherent
as expected. The instability occurs primarily with the wavefronts
of the ion mode parallel to the y axis as seen in Fig. 43a.

The conclusion is, therefore, that strongly-coupled parametric

decay is a ubiquitous instability for large—amplitude plasma waves.
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T,

It cannot be avoided simply by making kijxg > 1 or fl > 1. It would
e

appear the best way to avoid it is to wuse short intense laser

pulses. Fortunately, this requirement on the laser pulse is con-

gistent with the avoidance of the light wave instabilities in the

PBWA.

VD. Summary and Ceonclusions

We have investigated the importance of the wvarious instabili-
ties that compete with the BWE process. The importance of an in-
stability depends on two issues--first whether the instability
occurs, and second what effect the instability has on BWE once it
arises. Here we summarize the conclusions of this chapter for the

most important instabilities.

Self-Focusing

We investigated self-focugsing and filamentation of the electro-
magnetic waves from relativistic effects. The power threshold for
self—-focusing was found to be consistent with the simulations.
Conclusive evidence for relativistic filamentation by itself was
not obtained. We observed light to filament when fixed ions were
used, but many ther processes occurred simultaneously making it
difficult to isolate relativistic filamentation.

We showed that when the laser power exceeds the self-focusing
threshold the lasers' spot size collapses down to 2-5 c/wp in only
60 c/wp. The spot gize was also observed to remain relatively con-

stant at the final value for at least another 60 c/wp.
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When the ions move, initially the laser overfocuses, then
creates a widening channel void of plasma, and ultimately spreads
out., Ponderomotive filamentation is observed at the edge of the
channel where a density spike forms and then relaxes. The channel
formation time decreases as the laser beam relativistically self-
focuses because the ponderomotive force increases, both since E4
increases and "L," decreases.

The simulations provide an indication of the effects of self-
focusing. They demonstrate that, as expected, ponderomotive self-
focusing is undesirable since the formation of the channel destroys
the resonance and hence disrupts the BWE process. Relativistic
self-focusing is anticipated to be a positive effect since it would
permit propagation distances longer than a Rayleigh length. The
simulations indicate that this is true although, since in every
cage the laser beams entered the plasma with zero divergence, we
cannot state this unequivocally. The simulations also point out
that a detrimental result of relativistic self-focusing is that it
quickens the onset of ponderomotive self-~focusing. Pump depletion
is still observed in the longer system size simulation; however,
the simulation parameters were not optimized. Future work is nec-
essary in order to determine the optimum pulse shape (including
transverse), sgpot gize, laser power, and frequency ratio to ex-

ploit relativistic self-focusing.

SRS

We found, by multiplying the instability growth rate by the
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BWE growth time, that for gimulation parameters SRS inevitably
should occur. The simulations show that this is indeed the case.
For parameters relevant to an accelerator the RBS instability is
expected to be in the stimulated Compton regime. The simulations
also show that RBS does mnot lead to significant reflection. The
instability occurs and then ceases after the resulting plasma wave
breaks and heats the plasma. In the mobile ion simulations KBS
does not recur. On the other hand, 4 wave RSS and RFS, as they
relate to 1-D and 2-D cascading, need to be investigated further.

In conclusion, RBS is not important because (a) it occurs in a
short burst and then does not recur and (b} it is prevented from
occurring by making 2xkq4xg > 1, while 4 wave RSS and RFS need fur-

ther investigation in the large mofmp limit.

SBS

As for SRS, we multiplied the instability growth rate by the
BWE growth time to determine whether SBS will occur. Unlike SRS,
gince its growth rate is lower, it is not always important before
a BWE growth time. In the simulations it is found that the linear
gtability theory is a good guide. The onset of the instability
occurs later when the mass ratio is raised or the laser intensity
is lowered. The instability is avoided if the temperature ratio
is 1.

The resulting ion wave from SBS leads to mode coupling of the
BWE plasma wave. We note that the plasma waveform RBS also mode-

couples the plasma wave to a spectrum of slower phase velocily
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waves. However, the ion wave persists while the plasma wave, as
already noted, breaks. Mode coupling from a fixed density ripple
was earlier shown in Sec. IIBT to lead te a lower initial peak
plasma wave amplitude. Reflection from ©SBS was observed to be
substantial (50 percent) and this leads to lower overall effi-
ciency. SBS occurs predominantly in the lower frequency light
modes. This is also true for RBS.

To summarize, SBS if it occurs is observed to cause mode~
coupling and reflect a significant amount of the incident pumps.
it is observed to be eliminated by raising the temperature ratio
and is believed to be eliminated by making ZKikd 2 1. The impor-
tance of mode—coupling is that it gives rise to a reduced sat-
urated amplitude. It also creates a spectrum of "slow" plasma
waves, Somé of these waves couple to RBS. How such a spectrum
influences the injected electrons' beam gquality needs to Dbe

investigated.

Parametric Decay

It was found that, typically, strongly coupled parametric decay
was the most important instability, even more important than rela-
tivistic self-modulation. In order to determine the importance
of parametric decay, we integrated the growth rate over a BWE
growth time. Unlike SRS and SBS, there appears to be no way to
eliminate this instability for accelerator parameters. Therefore,
it is the limiting factor for the number of plasma wavelengths

possible for use in an acceleratoer,
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The simulations demonstrate that indeed for relevant parameters
the ion—-driven instability is significant and more important than
the relativistically driven one. The instability creates a spec-
trum of ion modes centered at 2k,. Once the instability onsets
the plasma wave appears very incoherent,

We conclude by remarking that the simulations demonstrate that
treating each instability separately to determine whether it will

not occur gives reasonable results.
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Chapter VI. SOME FINAL COHMENTS

This dissertation examined the characteristics of plasma waves
driven by collinear optical mixing. The major motivation was to
determine the feasibility of using such a plasma wave as the basis
for a future high energy accelerator. We conclude that neither the
analytical work nor the simulations indicates any fundamental
obstacle to the realization of the PBWA concept. The dissertation
clarifies the results of recent BWE experiments and identifies
those areas where future work should be concentrated.

The results of this work give insight into the recent experi-
ments at Los Alamos,®9 UCLA,*%:40:41,56 gnd Rutherford.30 In the
Los Alamos experiment a single frequency laser pulse from a CO,
laser was incident upon a plasma of 5 percent critical density.

The experiment failed to generate any fast electrons (the detec-
tors looked at energies above 15 MeV). The results of this experi-
ment can be understood from the following two reasons. First, only
a single frequency laser pulse was used so the generation of a
plasma wave relied on Raman Forward Scatter. However, the laser-—
plasma interaction length was too short to allow more than a few
e—foldings of the RFS instability (Sec. IVAZb). $Second, the laser
pulse was too long and too intense resulting in ponderomotive blow-
out as described in Sec. VBZ. Simulation II13 had very similar
parameters to this experiment and it modeled the experiment

accurately.
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The UCLA experiment exhibited several phenomena illustrated
in this diswertation. The saturation amplitude in this experiment
ig conzistent with our theoretical results in Sec. IIB3 on the
effects of laser rise time. It is also within experimental uncer-
tainty to the mode-~coupling phenomenon discussed in Sec. IIBS.
Further evidence of mode coupling was obtained by the UCLA experi-
mentalists who detected the spectrum of secondary electruostatic
modes [plasma waves at (w,,k, * n2k4), and ion waves at (uwyq,2kq)1.
The secondary modes and mode—coupling were observed in the computer
experiments.

The Rutherford group obtainedrnull resultg, This can be under-
stoocd from Sec. IIBZ2a where the effects of phenomenological damp-
ing were included. Given the collisional damping and pump
strengths in their experiment, a plasma wave below the detection
threshold is predicted.

This dissertation does not answer all questions but it helped
to identify those areas of BWE where future work is necessary.
These include the determination of the efficiency of converting
the laser energy into plasma wave energy. An accurate assessment
of the efficiency will depend on a clear understanding of cascad-
ing, both in one and two dimensions. Previous work on cascading
hag neglected higher-order couplings such as that between the
plasma wave and two light waves separated by Zmp. Understanding
cascading is also necessary in order to determine the phase veloci-
ty of the acceleration wave as seen by an injected particle,

Another area where future work is required is the determination of
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the optimum pulse shape to best wutilize the relativistic self-
focusing of the lasers.

A complete analysis of the PBWA would also include the topic of
beam loading as well as BWE. Beam loading attempts to determine
how many and with what beam quality electrons (or other appropiate
particles) can be accelerated. We did not address beam loading in
this dissertation as it has only recently been examined for the

PBWA and other plasma accelerators.TO
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APPENDIX A

ON NONLINEAR PLASHMA FREQUENCY SHIFTS IN BEAT WAVE EXCITATICN

In this appendix we will resolve a controversy that has arisen
recently in Beat Wave Excitation. The controversy has arisen over
the magnitude and sign of the nonlinear frequency shift. In par-
ticular, the discrepancy exists between the use of the Eulerian or
Lagrangian fluid description. On the one hand, the works of
Rogsenbluth and Liu®; Tang, Spréngle, and Sudan®; and Noble22Z
conclude that only relativistic effects contribute to the nonlinear
frequency shift; while, on the other hand, Bingham, Cairns, and
Evans2® and Mendonca24 claim that harmonics contribute an addi-
tional frequency shift larger in magnitude and oppesite in sign to
the relativistic one. With the exception of Noble, the former
group used Lagrangian coordinates. Bingham et al. and Mendonca
used Eulerian coordinates and both used the continuity equation
rather than Ampere's law, which 1is a stronger condition in one
dimension. Therefore, their set of equations possessed an ambiguity
which they eliminated by requiring that the second-order fluid
velocity vanish. This leads to a plasma drift (a point to be made
more explicit later) and & doppler-shifted frequency. This doppler
shift ig the additional frequency shift. By using Ampere's Law,
this drift is eliminated due to the induced electric field. Noble
used Eulerian coordinates and obtained only a relativistic shift,
but the error of Bingham et al. and Mendonca 1s not explicitly

exposed,




In the past literature many papers are devoted to large-
amplitude plasma oscillations. Among the first was the work of
Akhiezer and Polovin3®7 who studied both transverse and longitudinal
oscillations in the Eulerian description. For longitudinal oscil-
lationg, they conclude that the only nonlinear frequency shift is
negative and due to relativisitc effects (thermal corrections have
been neglected throughout). This point, however, is never explic-
itly mentioned. In 1959, Dawson®® sghowed through the Lagrangian
description, with the exclusion of relativistic effects, that
until wave breaking even large- amplitude oscillations are modeled
by a linear differential equation. Consequently, he also found no
nonlinear frequency shift. In 1957 Sturrock,®7 using the Eulerian
description and a multiple time scale analysis, concluded that
there was a positive frequency shift. In 1961, Jackson,®®8
bothered by the apparent discrepancy, concluded that Sturrock had
erred. Now, 25 years later, a similar controversy has arisen.

In what follows, we explicitly resolve the controversy using
the perturbation techniques of Krylov, Bogoliubov, and
Mitropolsky27:28 and the Eulerian description. The starting point
is Egq. (13) in the text.

52 vz v
(5cz * 9B) Ex = 3 of €2 3 Ex + %uf €2 3 Ey

+ € 4me [Q_ nvy — Ny Vx g; Vy

ot
Nye Vyv, nje (ng
te Tt vl By m c x) (A.1)
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From now on we normalize time to wsi, distance to the collision-

skin depth C/mp, and current to enge. We asgume that the lasers

are polarized in the z direction and are propagating in the X

direction. The parameter € 1is used to order the fields and for
bookkeeping purposes, The product of two laser quantities is of
order €. We are solving for Ey, vy, and n for given v,;'s and

Ez's; therefore, the indexes will be dropped. We assume E, v, and

n are of the form

M T (A.2)

E = e, cos §o + et e
i=1
Vo= v, sin gy + et vy e (A.3)
i=1
n = n, sin §, + et n;, (A.4)
i=1
while Ej is of the form-Ezj sin (Kjx - m;t). To complete our set

of equations, we use Ampere's Law and Gauss's Law.

oE . . BE ) s e _ o
st T3 =5 ~Nv=0 (A.5)

V.E=p=-n.  (A.6)

Note that the continuity equation is 3/9x of Eq. (A.5), so Eq.

{(A.S} is a stronger statement. In addition we assume that
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o = € Di(eo,¢e,F> + g2 Dg oL, (A.8)
e _ e 2 pe

3t - "% + € Bi(eo,¢e,F) + € Bz + ... (A9
a¥e

e e 2 re

P Ko + € Coleg,de,F) + €2 Co + ... (A.10)
ox

wvhere ¢, 1is the phase difference between the electric field and
the driving force and F is the amplitude of the driving force. The
dependence on F is included for pump rise time considerations.
Analogous notation for v and n is employed. The quantities Ai, Bi,

C and D1 are eventually chosen to eliminate secular growth.

1 ’
Equations (A.7) and (A.9) are the standard two—coupled first-order
nenlinear differential equations found in Refs. 8 and 9.

Substituting Egs. (A.2) and (A.7) through <{A.10} into the

linear operator on the left—-hand side of Eq. (A.1) gives

[“—“ + 1)E = g9 (mm% e, COS Y, + e, COS We]

32e
+ €1[2w0 A? sin § + ZEOmOB? cos Yo + wg g@gi + wg ei)

2(pe A e oA e ge g
+ € [A1 B, Cos Yo * B; e cos Yo — ZAT BT sin e
aB® aB®
€ o - e —1 o5 - € wt
+ 2uoAS sin Yo — eoAT de, sin Yo — egBY 360 sin Y
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829 328
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We now begin the process of equating the coefficients of the gl'g
in Eq. (A.1). Since the right-hand side of Eq. (A.1) has terms of
order € or higher, then the coefficient of €2 in Eq. (A.11) must

vanish. So

-w§ e, CoS Yo * e, COS Yo x_P(E) cos Yo (A1)

or
wg = 1 + 0e)

Next, we need the coefficients of Eé-on the right-hand side of Eq.
{A.6). Since it is already multiplied by £, to obtain the e! term

we use the zero order solutions of n and v, n, and v, to obtain

a 3 >
Ei{[gg NgVo = Vo 5= Vo = (Vg §y)]} (A.13)

-3
where v, and gy are prescribed. On the other hand, n, and v, need
to be calculated as functions of e, from Ampere's Law and Gauss's

Law.
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From Gauss's Law and Egs. (A.2), (A.4), and (A.7) through (A-10)

we find
50(-K0e0 gin Yo = -4men, sin Wn]
e : e oe,
+ ei(—C1 eg Sin Ye + DY cos Y + Kq Ve = -ni]
de de
2l-ce i ] e —1 e —1
+ € ( C €o 81in Yo + DT cos ¢ + DY Beg + CY Ve
de
ol =
* Ko Hye * n) ot .. (A.14)
The €9 term of Eq. (A.13) leads to
Kog = Ny and Yo = Y (A.15)

In addition, from Ampere's Law and Egs. (A.2) through (A.4), (A.8)

through (A.10) we -find

de
; = : —t
£°[woeo sin §a = Vg sin WV) + Ei(~B$ eosin Ve + A] cos Yo ~ wg %,

= MgV 8in Yy sin ¢ + Vi] + 62[—Bg €o §in Yo + Ag cos Ya

+AE9’-‘.2---14-3&--a—e—l_(’lJ ?_eiﬁ
1 3e, 13y, O ¥y,

= v, ¥ ngv, $in Yo * n v, sin ¢v) + ... (A.186)
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Thé €9 term in Eq. (A.15) gives

wye, Sin Yo = vy Sin Yy, (A1)
80

Vo T Wgeq and Yy = Yo

The fact that ¥ = ¥, = ¥, is consistent with our assumption that
Ai, Bl, Ci, and D1 were functions of ¢, but not ¢, and y,,.
After making use of Egs. (A.15), (A.17), and the prescribed

-y
forms for v, and gy, expression (A.13) becomes

3 . 1 .
~ 5 Kowieg sin 2§, - 5 %, &, sin Wy (A.18)
EEZi
where a = ——=%. Equating Eq. (A.18) to the e! term in Eq. (A.11)
i

2AS sin Yo + 2eBY cos o + (1 - wfle, cos Ve

o + e ) = - 3 wzez sin 2§ — s«
awg 1 2 TOYovo e 1

+ m%( 2

2 gin §. (A.1%)
In addition, we define ¢ = ¥, — V.

To eliminate scalar growth for e, we require

1

&, &
A® = —1-2 cog & = F cos ¢ {(A.20)




*, & (wg - 1) (wZ - 1)
- - T2 9 oo ; S
eoB? = y . sin ¢ + 2 eq, = -F sin ¢ + 5 eq
(A.21)
where
o &
. Rt
F = 4
In addition, from Eq. (A.21) we find
=1 ez sin 2 (A.22)
&, = 5 Koeg Sin Ve - : .

We are interested in A1 and B1 to second order, so next we proceed
to find Ag and Bg. These are determined from the €2 coefficients
in Eq. (A.1). The contribution from the left-hand side of Egq.

{A.6) is found in Eq. (A.11). The £2 coefficient from the right-

hand side of Eq. (A.1) is
22(- n,v, + o_ NEV, =V, -- Vg = V 9. v, + vV, E
at 1'% Bt 01 1t 9ax 9 O ax 1 orzrz
3 1
+ 5 vie, + > \{ eo] (A.23)

Expressions for n, and v, as functions of e, are determined from

the el terms of Ampere's Law and Gauss's Law in Egs. (A.14) and

(A.16), and they are

n, = ~kgeZ cos 2y, (A.24)
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and

&, Uz (1 - wi) W, e2
v, = _z—_ cos (Y + &) + ____5_g__ eq Sin Yo = Kq 020

(1 + cos 2¢g}. (A.25)

The first term of v, is independent of the wave amplitude e,.
Therefore, at early times it is possible for v, > vo. This is not
true, howvever, for times larger than wgl, so this term will be
neglected. Substituting Eqs. (A.15), (A 17), (A.24), and (A.25)

together with the assumed form of E, into Eq. (A.23) gives

Pl

3
2 kgwged cos 3§, - kg eg cos Yo ~ Koll = wdlwsed sin 2y,

We
0 3 i
+ kg 5 ed cos Yo — 4 kgwged cos 3¢, — 4 KZwged cos Yo

{1 - wd
= Kglg m“”g”“gﬂ sin 2y, + 5533 ed cos yo + % wgkZed cos 3y,
WEKE
- 2 2 ed cos Y + g wZed cos Y - g wged cos 3y,
i
* (62 + aZle, cos Y. (A.26)

Equating Eq. (A.26) to the €2 term in Eq. (A.11) gives

) 5 3A® oF 9AS
i 2 2 = = & —% - ez €+ ol ant
g Bolaf + &3 + g wged = BS e €oB % * Zwoeoly * 5 BF
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(A.2T)

anc

where the fact that 5El = 0 was used. It follows then that

0
weeaBE = ES e (a2 + q2) + S_ wyed - F cos ¢ (A.28)
o~0r g "0 2 16 " © N

AAE '

wvhere the terms B? 5$l - eoB%2 were neglected since they are

e

higher order. We note that Eq. (A.28) contains only termsg due to
relativistic and rise time effects. The terms in Eq. (A.26)

arising from the harmonics of n v and e, cancelled each other.

1° !

Bingham et al. and Mendonca obtained additional terms in Eq. (A.Z8)

because their v, did not contain the D.C. term of Eq. (A.Z5). In

Eulerian coordinates a D.C. fluid velocity does not imply a D.C.

current. The second order current is

i woed
J, 7 m(ngvg + v,) = —(Kowpe? sin 2§g) + (— Ko =5 ]
= KoWged cos 2¥, (A.29)
which has no D.C. component. If the D.C. component of v_ was

1

absent, then ji would have a D.C. component. This would imply that
the plasma had a D.C. drift. The magnitude of the accompanying
doppler frequency shift would be

“Kod, = % Kwges {A.30)

precisely the magnitude and sign of the extra shift found by
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Bingham et al., and by Mendonca. Ampere's Law prevents such a
drift by inducing an electric field. When using periodic particle

codes, therefore, one must be careful in the choice of the condi-

tions imposed on the k = 0 component of the longitudinal electric
field.
From Eq. (A.26) we find no contributions to Ag. The only

contributions to Ag, therefore, come from Eq. (A.11)

aBe 3B aF OB®
e . e ne e .1 e 1 or ~ "1
2uGAS = 2A% BE + e,AS deg * eoB® 56, * %0 3t oF - (A.31)

The only term on the right-hand side of Eq. {A.31) with low enough

order to be of interest is

oF OBY
20gAE = 5t BF

2 = €0 at == F gin ¢ . (A.32)

Consequently, our final set of equations is

Fcos ¢ - F sin ¢ (A.33)

fl

= A€ e
Woeo = AT + A

i
. wg — 1+ za2 + a2)
wpeod = woeg(BY + BY) = [ - g 4 2 ) e, + gg wped

- F sin ¢ ~ F cos o] (A.34)
Equations (A.33) and (A.34) are the well-known set of coupled

first-order nonlinear partial differential equations describing

Beat Wave excitation of Rosenbluth and Liuv and Tang, Sprangle, and
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Sudan. The only modification is the inclusion of the terms
involving F which arise because of the rise time of the pumps. In
addition, from the treatment we salso have the magnitude of the
second harmonic e, and third harmonic e, as a function of e,.

In summary, we have shown that the conclusions of Rosenbluth
and Liu,® Tang et al.,? and Noble,22 that only a relastivistic
amplitude dependent frequency shift exists, are correct. Bingham
et al.Z3 and Mendonca24 erred by using the continuity equation
rather than Ampere's Law and imposing the condition (v1> = 0. Ir
they had imposed the condition <j1> = 0 instead, they would have
gbtained the correct result. We have shown that by using Ampere's
Law, <31> ig forced to vanish {(no ambiguity ewxists). Consequently,
no plasma drift ensuves and no doppler frequency shift exists,
Recently, McKinstrie and Forslund2® have independently reached

similar conclusions.
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APPENDIX B
EXCITATION OF PLASHA WAVES WITH Aw = pr

The decay of two 1light waves, whose frequency difference is
Zmp, into a plasma wave was first reported by Rosenbluth and Liu.8
However, they neglected a term on the same order as the term they
retained. Fortuitously, this leads to an error of only a factor of
5/4, In this appendix we review the problem in both Eulerian and
Lagrangian coordinates.

The nonlinear driving force [Egq. (13) in the textl to order v3
is (We use the same dimengionless units of Appendix A.)

B -3+ WR e P23 8.12)
where the term in brackets arises only for Eulerian coordinates.
Rosenbluth and Liu carried out the analysis in Lagrangian coor-

dinates and retained only the 3x§ term., Henceforth, we take

E; = Ezq cos Yy + Eyp cos ¥p and Ey = e5 cos Wy,
where §; = kKyx - wjt and §, = x - t. The forms for the v's and
Bi's follow from the above definitions. We rewrite the X compenent

of Eq. (B.1a) to obtain the relevant driving terms

[%E MV, ™ Vi %; Vx] + vevaEy + vyBs. (B.1b)
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We want to find terms in Eq. (B.1) that possess resonant contribu-
tions at ¥, when ¥; = Vo = 2§, + o. We begin by evaluating each
term sgeparately first for Lagrangian coordinates and then we
repeat the process for Eulerian coordinates.

EziEz2 Aoy
“Opag wo[ﬁ“[SI" (Y1 + ¥z} — sin Aw)

VXVYEZ = eg

+ wg sin (g + tlfz)] (B.23)

and the only possible resonant term is

E 4E
= e, *%%5%% %Q cos (Y — Ay {(B.2b)
In Lagrangian coordinates ¢, - mo = X5 = t and A > Axlx, +

E(xy,80)1 = Awt + ¢ where x = x, + Eix,,t) and E(x,,t) = e,y cos yo.

As a result, Eq. (B.2b) reduces to

L o]

E E R fad . -~
—eq —%%G%Z %9[% el(¢+$°) E: i“Jn(AKeo)elnwo + c.c.] (B.3a’

-0
with the only resonant contribution of 0(e,) being
~e, FAw cos (&0 + §) (B.3b)

E,1Ez2
dwqwy

where, as before, F

Likewise, the resonant contribution of the v,jv ok, term is
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VyVuoEe = e, F cos(y, — AY) (B.4)

which for Lagrangian coordinates is

(PN F(%

10gg ) 2 iy -
e ¥*¥o Z: in Jn(AKeo)elnwo + c.c.} x e F cos(y, + $).
Rt + ]

(B.5)

The szy term as first found by Rosenbluth and Liu for Lagrangian

coordinates is

vgBy = QF{%E (sin (¥ + Wp) - sin A¥) + ky sin (g + *2)}
{B.6)

with the resonant contribution

= ~2FAk gin &Y

= —ZFQK[% ei(2$°+¢) Zz in Jn(ameo)einwo - c.c.] (B.T)
The lowest order, Ofe,), contribution is

= -2FAk J1(2ey) cos(§, + ¢)

= -2Fe Ak coslf, + ). (B.8)
Therefore, the total contribution found wusing Lagrangian coor-

dinates is

fFor Aw = Ak = 2
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E = e, cos ¥, (B.13a)

=
}

= e, 8in Y, (B.13b

<
1

= e, 8in ¥, . (B.13¢)

Hence to O(ey)

2. _9_vZ B8 (.4 L
at ™ T ax 2 T at [ 3 ®o F sin §, cos(Zy, + ¢))
3

- [—% Fe, sin ¥, cos(2y, + ¢)]

[H

- % eqF cosly, + ¢) - % eq F coslyy + §)

- eq F cos(xy + ¢) (B.14)

which iz identical to the Vzﬁy term when Lagrangian coordinates

were used. The total contribution is therefore
-SFe, cos(y, + ¢} (B.15)

which 1is identical to that found wusing Lagrangian coordinates.

The resulting growth rate® for the instability is therefore SF/2.
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